Differential gene expression in preimplantation embryos has been documented, but few focused studies have been done to compare differential expression in human embryos after embryonic genome activation and specifically how they relate to blastocyst development. We hypothesized that blastocyst stage embryos would differentially express genes in pathways important in cell division, mobilization, and processes important in embryo implantation including endometrial apposition, adhesion, and invasion. We analyzed gene expression in 6 preimplantation human embryos.
Differentially expressed genes in preimplantation human embryos: potential candidate genes for blastocyst formation and implantation.
Specimen part
View SamplesThe goal of the study was to characterize the molecular signatures of CD8 T cell subpopulations sorted from HIV+ lymph nodes and HIV- tonsils. We compared the transcriptome profiles of follicular and non -foliccular CD8 T cells (sorted based on the surface expression fo CCR7 and CXCR5, chemokine receptors that govern the intratissue trafficking of T cells). This is the first study addressing this question. We found several genes differentially expressed in these two CD8 T cell populations. Our pathway analysis revealed that several pathways related to costimulation/activation as well as to beta-catenin pathway were differentially expressed in these two CD8 t cell populations too. Overall design: CD8 T cell populations were sorted and whole transcriptome analysis was performed using an Illumina machine
Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies.
No sample metadata fields
View SamplesAims/hypothesis Due to their ability to regulate various signalling pathways (cytokines, hormones, growth factors), the suppressor of cytokine signalling (SOCS) proteins are thought to be promising therapeutic targets for metabolic and inflammatory disorders. Hence, their role in vivo has to be precisely determined.
Constitutive expression of suppressor of cytokine signalling-3 in skeletal muscle leads to reduced mobility and overweight in mice.
Specimen part, Subject
View SamplesExcessive consumption of beverages sweetened with high-fructose corn syrup (HFCS) is associated with obesity and with an increased risk of colorectal cancer. Whether HFCS contributes directly to tumorigenesis is unclear. We investigated the effects of daily oral administration of HFCS in APC mutant mice, which are predisposed to develop intestinal tumors. The HFCS-treated mice showed a dramatic increase in tumor size and tumor grade in the absence of obesity or metabolic syndrome. HFCS increased the levels of fructose and glucose in the intestinal lumen and serum, respectively, and the tumors absorbed both sugars. Within the tumors, fructose was converted to fructose-1-phosphate, leading to activation of glycolysis and increased synthesis of fatty acids that support tumor growth. These mouse studies support the hypothesis that the combination of dietary glucose and fructose, even at a moderate dose, can enhance tumorigenesis. Overall design: We investigated tumor and small intestines in APC mutant mice, which are predisposed to develop intestinal tumors.
High-fructose corn syrup enhances intestinal tumor growth in mice.
Specimen part, Cell line, Treatment, Subject
View SamplesPurpose: The goal of this study is to identify host genes whose expression is perturbed in primary CD4+ T cells by histone deacetylase (HDAC) inhibitors (HDACi) SAHA and RMD, which have different potencies and specificities for various HDACs. The study aims to evaluate the effects of SAHA and RMD that may promote or inhibit reactivation of HIV provirus out of latency. Methods: Peripheral blood mononuclear cells were collected from 4 HIV-seronegative donors. CD4+ T cells were isolated and utilized to generate an in vitro model of latent HIV infection (model developed in the Spina laboratory and previously described in Spina et al., 2013). Mock-infected cells were cultured in parallel to evaluate effects of SAHA and RMD that may be dependent on the exposure of cells to virus. Following generation of the model, cells were treated with SAHA, RMD or their solvent dimethyl sulfoxide (DMSO) for 24 hours. Mock-infected cells were treated in parallel. The experiment had 4 biological replicates, 6 conditions for each, for a total of 24 samples. ERCC spikes (Thermo Fisher Scientific, Inc.) were added to cell lysates based on cell number in each sample (10 ul of 1:800 dilution per million cells). Mix 1 was used for DMSO- and mix 2 for SAHA- and RMD-treated cells. After all samples were collected, RNA was extracted and subjected to deep sequencing by Expression Analysis, Inc. Sequence reads that passed quality filters were mapped using Tophat (human genome) or Bowtie (ERCC spikes and HIV) and counted using HTSeq. ERCC spikes with the same concentration in mixes 1 and 2 were utilized to remove unwanted technical variation. Any human gene which did not achieve at least 1 count per million reads in at least 4 samples or any ERCC that did not achieve at least 5 reads in at least 4 samples was discarded. Differential gene expression analysis was performed using library EdgeR in Bioconductor R. National Center for Biotechnology Information (NCBI) HIV-1 Human Interaction Database was then searched for genes that have been implicated in controlling HIV latency. EdgeR output was used to extract expression information of the genes of interest from the NCBI database to identify genes implicated in HIV latency that were modulated by SAHA and RMD. The resulting lists were manually curated to verify relevance to HIV latency, using the Description column of the NCBI database, as well as available PubMed references. Results: Using a custom built data analysis pipeline, ~100 million reads per sample were mapped to the human genome (build hg38). After applying filtering criteria, 16058 human transcripts, 19 ERCC spikes transcripts, and HIV NL4-3 transcripts were identified with the Tophat/Bowtie and HTSeq workflow. Differential expression analysis was performed between SAHA or RMD-treated and DMSO-treated cells. In addition, differential modulation of gene expression by SAHA and RMD in the model of HIV latency and mock-infected cells was assessed using EdgeR. In mock-infected cells, SAHA upregulated 3,971 genes and downregulated 2,940 genes; RMD upregulated 5,068 genes and downregulated 4,050 genes. In the model of HIV latency, SAHA upregulated 3,498 genes and downregulated 2,904 genes; RMD upregulated 5,116 genes and downregulated 4,053 genes (FDR < 0.05). SAHA modulated 6, and RMD 11 genes differentially between mock-infected cells and the model of HIV latency. Following search of the NCBI HIV-1 Human Interaction Database, 27 genes upregulated and 29 downregulated in common between SAHA and RMD were found to be relevant to regulation of HIV latency; 31 were up- and 32 downregulated by RMD only; and 6 were up- and 2 were downregulated by SAHA only. Conclusions: This study demonstrates that SAHA and RMD, which have different potencies and specificities for HDACs, modulate a set of overlapping genes implicated in regulation of HIV latency. Some of these genes may be explored as additional host targets for improving the outcomes of “shock and kill” strategies. Overall design: Transcriptomic profiling of the in vitro model of HIV latency and mock-infected cells treated with SAHA, RMD or the solvent DMSO (N=4 donors) by deep sequencing at Expression Analysis, Inc.
Long non-coding RNAs and latent HIV - A search for novel targets for latency reversal.
Specimen part, Treatment, Subject
View SamplesBackground: Gliomas are the most common type of primary brain tumours, and in this group glioblastomas (GBMs) are the higher-grade gliomas with fast progression and unfortunate prognosis. Two major aspects of glioma biology that contributes to its awful prognosis are the formation of new blood vessels through the process of angiogenesis and the invasion of glioma cells. Despite of advances, two-year survival for GBM patients with optimal therapy is less than 30%. Even in those patients with low-grade gliomas, that imply a moderately good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells with characteristics of neural stem cells which are able to grow in vitro forming neurospheres and that can be isolated in vivo using surface markers such as CD133. The aim of this study was to define the molecular signature of GBM cells expressing CD133 in comparison with non expressing CD133 cells. This molecular classification could lead to the finding of new potential therapeutic targets for the rationale treatment of high grade GBM.
Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas.
Specimen part, Disease
View SamplesTo explore the primary cause of Dilated Cardiomyopathy in heart samples from DCM-diagnosed patients who had undergone heart transplant (hDCM), we set out to identify differentially expressed genes by massively parallel sequencing of heart samples. Overall design: Methods: Heart mRNA profiles from DCM-diagnosed patients who had undergone heart transplant (hDCM) were generated by deep sequencing, in triplicate, using Illumina GAIIx.
Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.
No sample metadata fields
View SamplesTo explore the primary cause of Dilated Cardiomyopathy in Bmi1-null mice, we set out to identify differentially expressed genes by massively parallel sequencing of heart samples from Bmi1f/f;aMHCTM-Cretg/+ mice versus aMHCTM-Cretg/+ control mice (17 weeks postinduction). Overall design: Methods: Heart mRNA profiles of 17-weeks post-induction Bmi1f/f; MHCTM-Cretg/+ mice and MHCTM-Cretg/+ control mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. Sequence reads were pre-processed with Cutadapt 1.2.1, to remove TruSeq adapters and mapped on the mouse transcriptome (Ensembl gene-build GRCm38.v70) using RSEM v1.2.3. The Bioconductor package EdgeR was used to normalize data with TMM and to test for differential expression of genes using GLM.
Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.
No sample metadata fields
View SamplesElevated fructose consumption has been associated with metabolic and renal diseases. It is controversial whether kidney problems are a result of systemic metabolic disease or stem, at least in part, from changes due to local fructose metabolism. To study the short-term effect of fructose on genetic programs in renal proximal tubules, the diet for rats in experimental groups was supplemented for 7 days with 20% fructose in the drinking water. Two sets of 8 rats each on different baseline rodent diets were used in this study. 4 animals of each set received fructose in the drinking water while the other 4 served as controls. Animals were sacrificed after the experimental period of 7 days and slices of superficial kidney cortex were used for total RNA extraction. The RNA was analyzed with Affymetrix RaGene-2_0-st.
Transcriptome signature for dietary fructose-specific changes in rat renal cortex: A quantitative approach to physiological relevance.
Sex, Age, Specimen part
View SamplesNoval and traditional signaling pathways involved in cervical ripening that were regulated by MPA were identified.
Preventing cervical ripening: the primary mechanism by which progestational agents prevent preterm birth?
No sample metadata fields
View Samples