This SuperSeries is composed of the SubSeries listed below.
Bacterial control of host gene expression through RNA polymerase II.
Sex, Cell line
View SamplesUrinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation, in which the contrasting effects of pathogens and commensals on host tissues are clearly displayed. While virulent Escherichia coli cause severe, potentially life-threatening disease by breaking the inertia of the mucosal barrier and infecting the kidneys, the most common outcome of bacteriuria is an asymptomatic carrier state resembling commensalism at other mucosal sites. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease associated responses in the host. To address this question, we examined the effects of asymptomatic bacterial carriage on host gene expression.
Bacterial control of host gene expression through RNA polymerase II.
Sex
View SamplesUrinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation, in which the contrasting effects of pathogens and commensals on host tissues are clearly displayed. While virulent Escherichia coli cause severe, potentially life-threatening disease by breaking the inertia of the mucosal barrier and infecting the kidneys, the most common outcome of bacteriuria is an asymptomatic carrier state resembling commensalism at other mucosal sites. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease associated responses in the host. To address this question, we examined the effects of asymptomatic bacterial carriage on host gene expression.
Bacterial control of host gene expression through RNA polymerase II.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study.
Specimen part, Disease, Subject
View SamplesBackground
Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study.
Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Basonuclin-1 modulates epithelial plasticity and TGF-β1-induced loss of epithelial cell integrity.
Specimen part, Cell line
View SamplesTGF-b1-stimulation induces an epithelial dedifferentiation-process, throughout which epithelial cell sheets disintegrate and gradually switch into fibroblastic-appearing cells (EMT-like transition). The purpose of these profiles was to identify differentially expressed genes that are regulated transcriptionally. Standard microarry-based gene expression profiles measure steady-state RNA but do not provide insight into underlying regulatory principles. NIAC-NTR-based gene expression profiling (Kenzelmann et al., PNAS, 2007) essentially enables the dissection of transcriptionally versus non-transcriptionally regulated genes within respective analysed time-frames. Briefly, NIAC-NTR relies on incorporation of 4sU (thio-uridine) into nascent RNA, which can subsequently be specifically isolated by custom-made columns. Total- and enriched (4sU-labeled) are then further processed for microarray gene expression profiling by standard procedures. This dataset complements previously released data of NIAC-NTR-based gene expression profiling of cells treated with TGF-b1 and 4sU for 2hrs [GSE23833].
Basonuclin-1 modulates epithelial plasticity and TGF-β1-induced loss of epithelial cell integrity.
Specimen part, Cell line
View SamplesTGF-b1-stimulation induces an epithelial dedifferentiation-process, throughout which epithelial cell sheets disintegrate and gradually switch into fibroblastic-appearing cells (EMT-like transition). Several transcription factors, some of them being TGF-b1-responsive, are functionally involved in such a switch and affect epithelial differentiation and plasticity.
Basonuclin-1 modulates epithelial plasticity and TGF-β1-induced loss of epithelial cell integrity.
Specimen part, Cell line
View SamplesThe goal of the experiment was to assay the role of the glucocorticoid receptor (GR) in development of mesenchynmal cells of the lung occuring between the 16 and 18 day of embryonal development.
Glucocorticoid activity during lung maturation is essential in mesenchymal and less in alveolar epithelial cells.
Specimen part
View SamplesThe Forkhead family of transcription factors comprises numerous members and is implicated in various cellular functions, including cell growth, apoptosis, migration and differentiation.In this study we identified the Forkhead factor FoxQ1 as increased in expression during TGF-beta1 induced changes in epithelial differentiation, suggesting functional roles of FoxQ1 for epithelial plasticity.The repression of FoxQ1 in mammary epithelial cells led to a change in cell morphology characterized by an increase in cell size, pronounced cell-cell contacts and an increased expression of several junction proteins (e.g. E-cadherin). In addition, FoxQ1 knock-down cells revealed rearrangements in the actin-cytoskeleton and slowed down cell cycle G1-phase progression.Furthermore, repression of FoxQ1 enhanced the migratory capacity of coherent mammary epithelial cells.Gene expression profiling of NM18 cells indicated that FoxQ1 is a relevant downstream mediator of TGF-beta1 induced gene expression changes. This included the differential expression of transcription factors involved in epithelial plasticity, e.g. Ets-1, Zeb1 and Zeb2.In summary, this study has elucidated the functional impact of FoxQ1 on epithelial differentiation
The Forkhead factor FoxQ1 influences epithelial differentiation.
Specimen part, Treatment
View Samples