We tamoxifen treated 8-12 week old mice that had floxed alleles of the following: 1) both Apc alleles (giving rise to Apc truncation/inactivation); 2) both Cdx2 alleles (giving rise to Cdx2 inactivation; 3) one Braf allele, that upon Cre-mediated recombination gives a Braf V600E mutant allele (details below), and 4) the combination of both the Cdx2 alleles and the BrafV600E allele. All four of those groups also had a CDX2P-CreERT2 transgene that expresses Cre recombinase fused to a tamoxifen-regulated fragment of the estrogen receptor ligand binding domain. CreERT2 expression occurs only in tissues where the Cdx2 gene is expressed, which is almost exclusively in adult mouse cecum and colon epithelium. A fifth group of mice had the floxed Cdx2 alleles, but no CDX2P-CreERT2 gene. Treating the mice having CDX2P-CreERT2 with tamoxifen permits the Cre recombinase to enter the cell nucleus and recombine the Apc, Braf, and/or Cdx2 alleles containing loxP sequence elements. Mice were treated with intraperitoneal injection of tamoxifen dissolved in corn oil. Three mice per group were used. The control mice did not develop tumors or any morphological or histological changes in their epithelium, but their colons were used to create the 3 control samples. To obtain the BrafV600E allele we used a genetically engineered mouse line previously described by Dankort et al. (Genes Dev 2007, 21:379-84) that can express the BrafV600E mutant protein following Cre-mediated recombination. The Braf(CA) (Braf-Cre-activated) allele mice carry a gene-targeted allele of Braf, where Braf sequences from exons 15-18 are present in the normal mouse Braf intron 14, followed by a mutated exon 15 (carrying the V600E mutation). The exon 15-18 sequence element is flanked by loxP sites. In the absence of Cre-mediated recombination, the Braf(CA) allele expresses a wild type Braf protein. Following Cre-mediated recombination, the Braf exon 15-18 element is removed, and the Braf(CA) allele then encodes the Braf V600E protein (from the introduced mutated exon 15). RNA was purified from tumor or normal tissue, and targets for Affymetrix arrays were synthesized from the mRNAs. We used Affymetrix Mouse Gene 2.1 ST arrays, which hold 41345 probe-sets, but we largely analyzed just those 25216 probe-sets that were mapped to Entrez gene IDs. Raw data was processed with the Robust Multi-array Average algorithm (RMA). Data is log2-transformed transcript abundance estimates. We fit a one-way ANOVA model to the five groups of samples. We supply a supplementary excel workbook that holds the same data as the data matrix file, but also holds the probe-set annotation at the time we analyzed the data, and some simple statistical calculations, which selects subsets of the probe-sets as differentially expressed between pairs of groups, as well as significant Cdx2-/- by Braf V600E interactions. It also gives the homologous human gene IDs we used for enrichment testing, which were 1-to-1 best homologs according to build 68 of NCBI's Homologene. A second supplementary sheet shows the data we enrichment tested after collapsing to distinct human homologs, joins of the results of tests with GSE4045 data and of tests with TCGA data to the mouse genes, and the intersections of selected genes in those data set with our gene selections in mouse. Consumers should consider obtaining more up-to-date probe-set annotation for the array platform.
BRAF<sup>V600E</sup> cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis.
Sex, Treatment
View SamplesWe measured gene expression across the whole genome in a panel of lines selected for a wing shape trait (angular offset). The lines were created in separate experiments, originating from two widely separated populations, and including multiple replicates of one population, but all were created using the same selection regime and trait. Here we evaluate the data with two objectives: 1) to identify candidate wing shape genes for future testing and validation, and 2) to assess variation among lines in the outcome of identical selection regimes
Microarray analysis of replicate populations selected against a wing-shape correlation in Drosophila melanogaster.
No sample metadata fields
View SamplesMajor roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR dictates distinct ER and PR chromatin binding and differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Genomic analyses of the two PR isoforms, PRA and PRB, indicate that these isoforms bind distinct genomic sites and interact with different sets of co-regulators to differentially modulate gene expression as well as pro- or anti-tumorigenic phenotypes. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Of note, the two isoforms reprogrammed estrogen activity to be either pro or anti-tumorigenic. In concordance to the in-vitro observations, differential gene expression was observed in PRA and PRB-rich patient tumors and importantly, PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. This differential of better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher anti-tumor activity of combination therapies of tamoxifen with PR antagonists and modulators. Knowledge of various determinants of PR action and their interactions with estrogen signaling to differentially modulate breast cancer biology should serve as a guide to the development of biomarkers for patient selection and translation of PR-targeted therapies to the clinic. Overall design: For in-vitro experiments, cells were grown in steroid-deprived RPMI for 48 hours to 80% confluence, before being treated for with the hormones of interest (vehicle, 10 nM estrogen, 10 nM R5020 or both estrogen +R5020). Cells were then fixed with 1% formaldehyde for 10 minutes and the crosslinking was quenched with 0.125 M glycine for 5 minutes. Fixed cells were suspended in ChIP lysis buffer (1 ml 1M Tris pH 8.0; 200 µl 5M NaCl; 1 ml 0.5M EDTA; 1 ml NP-40; 1 g SDS, 0.5 g deoxycholate) and sheared in the Diagenode Biorupter for 20 minutes (30 second cycles). 100 µl of sheared chromatin was removed as input control. A 1:10 dilution of sheared chromatin in ChIP dilution buffer (1.7 ml 1M Tris pH 8.0; 3.3 ml 5M NaCl; 5 ml 10% NP-40; 200 µl 10% SDS; to 100 ml with H2O), 4 µg antibody and 30 µl magnetic DynaBeads were incubated in a rotator at 4oC overnight. Chromatin was immunoprecipitated overnight using anti-ER (Santa Cruz Biotechnology HC-20), anti-PR (in-house made KD68) or rabbit IgG (Santa Cruz Biotechnology SC-2027). Next, the immunoprecipitated chromatin was washed with ChIP wash buffer I (2 ml 1M Tris pH 8.0; 3 ml 5M NaCl; 400 µl 0.5M EDTA; 10 ml 10% NP-40; 1 ml 10% SDS; to 100 ml with H2O), ChIP wash buffer II (2 ml 1M Tris pH 8.0; 10 ml 5M NaCl; 400 µl 0.5M EDTA; 10 ml 10% NP-40; 1 ml 10% SDS; to 100 ml with H2O), ChIP wash buffer III (1 ml 1M Tris pH 8.0; 5 ml of 5M LiCl; 200 µl 0.5M EDTA; 10 ml 10% NP-40; 10 ml 10% deoxycholate; to 100 ml with H2O) and TE (pH 8.0). Elution was performed twice from beads by incubating them with 100 µl ChIP-elution buffer (1% SDS, 0.1 M NaHCO3) at 65oC for 15 minutes each. The eluted protein-DNA complexes were de-crosslinked overnight at 65oC in 200 µM NaCl. After de-crosslinking, the mixture was treated with proteinase K for 45 minutes followed by incubation with RNase A for 30 minutes. Finally, DNA fragments were purified using Qiagen PCR purification kit and reconstituted in 50 µl nuclear-free water. Real time PCR was performed using SYBR green. For ChIP-seq library preparations, libraries were prepared using KapaBiosystems LTP library preparation kit (#KK8232) according to the manufacturer's protocol.
Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes.
Specimen part
View SamplesSingle nucleotide polymorphisms (SNP) can affect mRNA gene expression, in a tissue-specific manner. In this work we survey association of SNP alleles with mRNA gene expression in human dorsal root ganglions (DRG) to gain insights into pathophysiology of pain phenotypes.
Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes.
Specimen part
View SamplesSingle nucleotide polymorphisms (SNP) can affect mRNA gene expression, in a tissue-specific manner. In this work we survey association of SNP alleles with mRNA gene expression in human dorsal root ganglions (DRG) to gain insights into pathophysiology of pain phenotypes.
Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes.
Specimen part
View SamplesAnalysis of MCF7 cells transfected with ER mutants (S463P, Y537S and D538G) in phenol-red free, charcoal stripped FBS media and regular DMEM/F12 media. Results provide insight on the gene expression profiles induced by the various ER mutants.
ESR1 ligand-binding domain mutations in hormone-resistant breast cancer.
Cell line
View SamplesHuman transcriptome array analysis of human cord blood mononuclear leokocytes from neonates exposed to histological chorioamnionitis and compared with healthy neonates
Histological Chorioamnionitis Induces Differential Gene Expression in Human Cord Blood Mononuclear Leukocytes from Term Neonates.
Specimen part
View SamplesPancreatic cancer is an aggressive malignancy, often diagnosed at metastatic stages. Several studies have implicated systemic factors, such as extracellular vesicle release and myeloid cell expansion, in the establishment of pre-metastatic niches in cancer. The Rab27a GTPase is overexpressed in advanced cancers, can regulate vesicle trafficking, and has been previously linked to non-cell autonomous control of tumor growth and metastasis, however, the role of Rab27a itself in the metastatic propensity of pancreatic cancer is not well understood. Here, we have established a model to study how Rab27a directs formation of the pre-metastatic niche. Loss of Rab27a in pancreatic cancer cells did not decrease tumor growth in vivo, but resulted in altered systemic myeloid cell expansion, both in the primary tumors and at the distant organ sites. In metastasis assays, loss of Rab27a expression in tumor cells injected into circulation compromised efficient outgrowth of metastatic lesions. However, Rab27a knockdown cells had an unexpected advantage at initial steps of metastatic seeding, suggesting that Rab27a may alter cell-autonomous invasive properties of the tumor cells. Gene expression analysis of gene expression revealed that downregulation of Rab27a increased expression of genes involved in epithelial-to-mesenchymal transition pathways, consistent with our findings that primary tumors arising from Rab27a knockdown cells were more invasive. Overall, these data reveal that Rab27a can play divergent roles in regulating pro-metastatic propensity of pancreatic cancer cells: by generating pro-metastatic environment at the distant organ sites, and by suppressing invasive properties of the cancer cells.
Rab27a plays a dual role in metastatic propensity of pancreatic cancer.
Cell line
View SamplesImmune cell infiltration in myositis were by examining microarray expression profiles in muscle biopsies from 31 myositis patients and 5 normal controls.
Genomic signatures characterize leukocyte infiltration in myositis muscles.
Sex, Specimen part, Disease, Disease stage
View Samples