Affymetrix soybean genome arrays were used to identify genes differentially expressed in the immune resistance response at 6, 12, 24, and 48 hours after inoculation with Phakopsora pachyrhizi isolates TW72-1 or HW94-1
A microarray analysis for differential gene expression in the soybean genome using Bioconductor and R.
No sample metadata fields
View SamplesTumor cells that give rise to metastatic disease are a primary cause of cancer-related death and have not been fully elucidated in patients with lung cancer. Here, we addressed this question by using tissues from a mouse that develops metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. We identified a metastasis-prone population of tumor cells that differed from those with low metastatic capacity on the basis of having sphere-forming capacity in Matrigel cultures, increased expression of CD133 and Notch ligands, and relatively low tumorigenicity in syngeneic mice. Knockdown of jagged1 or pharmacologic inhibition of its downstream mediator phosphatidylinositol 3-kinase abrogated the metastatic but not the tumorigenic activity of these cells. We conclude from these studies on a mouse model of lung adenocarcinoma that CD133 and Notch ligands mark a population of metastasis-prone tumor cells and that the efficacy of Notch inhibitors in metastasis prevention should be explored.
The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice.
Specimen part
View SamplesRNA-SEQ profiling of dopaminergic neurons from the substantia nigra pars compacta and ventral tegmental area regions of the mouse mid-brain Overall design: Murine midbrain dopaminergic neurons from the SNpc and VTA regions
Identification of neurodegenerative factors using translatome-regulatory network analysis.
No sample metadata fields
View SamplesRNA-SEQ of dopaminergic neurons from the mid-brain of mice that received one daily intraperitoneal injection of MPTP-HCl (30 mg/kg free base per day) or saline for five consecutive days. Samples were taken 4 days. Overall design: Murine midbrain dopaminergic neurons that were treated with MPTP-HCl
Identification of neurodegenerative factors using translatome-regulatory network analysis.
No sample metadata fields
View SamplesHuman CD4+CD45RA+CD25- cells were lentivirally transduced with wild-type or mutated (A384T or R397W) FOXP3, or an empty vector (EV). Transduced cells were sorted 14 days post-transduction based on GFP expression, and were restimulated with soluble anti-CD3 (30 ng/mL) and irradiated PBMCs (3x) for 14 more days. Cells were then activated with 0.5 g/ml of phytohemagglutinin (PHA) in the presence or absence of SGF003 (8 g/mL), and total RNA was extracted for microarray analysis. Overall, this study highlights the functional impact of TIP60 in FOXP3-driven Treg biology and provides a novel target for manipulation of human Treg activity.
Suppression by human FOXP3<sup>+</sup> regulatory T cells requires FOXP3-TIP60 interactions.
No sample metadata fields
View SamplesThere is an association between transcriptome and the exercise-related phenotype. Peripheral blood cells suffer alterations in the gene expression pattern in response to perturbations caused by exercise. The acute response to endurance activates stress and inflammation, as well as growth and tissue repair responses.
PBMCs express a transcriptome signature predictor of oxygen uptake responsiveness to endurance exercise training in men.
Sex, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesC/EBPb is an auto-repressed protein that becomes posttranslationally activated by Ras-MEK-ERK signalling. C/EBPb is required for oncogene-induced senescence (OIS) of primary fibroblasts, but also displays pro-oncogenic functions in many tumour cells. Here, we show that C/EBPb activation by H-RasV12 is suppressed in immortalized/transformed cells, but not in primary cells, by its 30 untranslated region (30UTR). 30UTR sequences inhibited Ras-induced cytostatic activity of C/EBPb, DNA binding, transactivation, phosphorylation, and homodimerization, without significantly affecting protein expression. The 30UTR suppressed induction of senescence-associated C/EBPb target genes, while promoting expression of genes linked to cancers and TGFb signalling. An AU-rich element (ARE) and its cognate RNA-binding protein, HuR, were required for 30UTR inhibition. These components also excluded the Cebpb mRNA from a perinuclear cytoplasmic region that contains activated ERK1/2, indicating that the site of C/EBPb translation controls de-repression by Ras signalling. Notably, 30UTR inhibition and Cebpb mRNA compartmentalization were absent in primary fibroblasts, allowing Ras-induced C/EBPb activation and OIS to proceed. Our findings reveal a novel mechanism whereby non-coding mRNA sequences selectively regulate C/EBPb activity and suppress its anti-oncogenic functions.
3'UTR elements inhibit Ras-induced C/EBPβ post-translational activation and senescence in tumour cells.
Cell line
View SamplesC/EBP is an important regulator of oncogene-induced senescence (OIS). Here we show that C/EBP, a heterodimeric partner of C/EBP whose biological functions are not well understood, inhibits cellular senescence. Cebpg-/- MEFs proliferated poorly, entered senescence prematurely, and expressed a pro-inflammatory gene signature, including elevated levels of senescence-associated secretory phenotype (SASP) genes whose induction by oncogenic stress requires C/EBP. The senescence-suppressing activity of C/EBP required its ability to heterodimerize with C/EBP. Covalently linked C/EBP homodimers (~) inhibited the proliferation and tumorigenicity of RasV12-transformed NIH3T3 cells, activated SASP gene expression, and recruited the CBP co-activator in a Ras-dependent manner, whereas ~ heterodimers lacked these capabilities and efficiently rescued proliferation of Cebpg-/- MEFs. C/EBP depletion partially restored growth of C/EBP-deficient cells, indicating that the increased levels of C/EBP homodimers in Cebpg-/- MEFs inhibit proliferation. The proliferative functions of C/EBP are not restricted to fibroblasts, as hematopoietic progenitors from Cebpg-/- bone marrow also displayed impaired growth. Furthermore, high CEBPG expression correlated with poorer clinical prognoses in several human cancers, and C/EBP depletion decreased proliferation and induced senescence in lung tumor cells. Our findings demonstrate that C/EBP neutralizes the cytostatic activity of C/EBP through heterodimerization, which prevents senescence and suppresses basal transcription of SASP genes.
C/EBPγ suppresses senescence and inflammatory gene expression by heterodimerizing with C/EBPβ.
Specimen part
View SamplesBacteria are extremely versatile organisms which rapidly adapt to changing environments. When Escherichia coli cells switch from planktonic growth to biofilm, flagellum formation is turned off, and the production of fimbriae and extracellular polysaccharides is switched on. Here we show that BolA protein is a new bacterial transcription factor which modulates the switch from planktonic to sessile lifestyle. BolA negatively modulates flagella biosynthesis and thus swimming capacity. Furthermore, BolA overexpression favors biofilm formation and involvesinvolving fimbriae-like adhesins and curli production. Our results unraveled for the first time that BolA is a protein with high affinity to DNA, involved in the regulation of several genes of E. coli at a genome-wide scale level. Moreover, this observation further demonstrated that the most significant targets of this protein involved a complex network of genes encoding proteins extremely necessary in biofilm development processes. Herein we propose that BolA is a motile/adhesive transcriptional switch, specifically involved in the transition between the planktonic and the attachment stage of biofilm formation process.
BolA is a transcriptional switch that turns off motility and turns on biofilm development.
No sample metadata fields
View SamplesInfiltrating T-lymphocytes from the peripheral blood into the central nervous system (CNS) play a dynamic role in the development of a neurological immune-mediated diseases. HAM/TSP is a chronic progressive inflammatory neurological disorder associated with human T-cell lymphotropic virus type I (HTLV-I) infection. In this chronic myelopathy, virus-infected circulating T-cells infiltrate the CNS and an immune response is initiated against the components of CNS. As the HTLV-I proviral load (PVL) has been used as the best clinical marker for patient diagnostic with HAM/TSP, we hypothesized there might be a signature on T-cell receptor (TCR) clonal repertoire in these patients, which could distinguish HAM/TSP patients from the healthy population, as well as from patients with a more heterogeneous CNS-reactive inflammatory disease as multiple sclerosis (MS). With this in mind, we applied an innovative unbiased molecular technique – unique molecular identifier (UMI) library-strategy to investigate with high accuracy the TCR clonal repertoire by high throughput sequencing (HTS) technology. cDNA-TCR ß-chain libraries were sequenced from 2 million peripheral mononuclear cells (PBMCs) in 14 HAM/TSP patients, 34 MS patients and 20 healthy controls (HC). To address whether the clonal expansion correlates with the patient's PVL level, analysis of longitudinal TCR repertoire was performed in 2 HAM/TSP patients. Over 5.6 million TCR sequences were generated per sample on HiSeq 2500 Illumina system and analyzed through the molecular identifier groups-based error correction pipeline (MiGEC). Bioinformatic analysis showed that clones with more than 8 reads had a lower coefficient of variation (CV) and then could be used with confidence to evaluate the TCR clonal expansion. While HAM/TSP patients showed the higher clonal T-cell expansion compared to MS and HC, increase of the TCR clonal expansion was inversely correlated with the diversity of TCR repertoire in all subject's group. In addition, correlation of the PVL with TCR clonal expansion was observed in HAM/TSP patients at longitudinal time-points. Surprisingly, MS patients showed a higher diversity of TCR repertoire along with a very slight clonal T-cell expansion in comparison to either HAM/TSP patients or HC. Despite of the higher TCR clonal expansion in HAM/TSP patients, a non-shared or “private” TCR repertoire was observed in these patients. No clones that shared the same CDR3 amino acid sequences were seen in HC and MS patients. However, a cluster of related CDR3 amino acid sequences were observed for 18 out of 34 MS patients when evaluated by phylogenetic tree analysis. It suggestes that a TCR-repertoire signature might characterize patients with MS. Our findings suggest that even though a unique TCR-b repertoire shapes the immune response in patients with neurological immune-mediated disease, a relatedness on clonal T-cell repertoire exist in MS. Overall design: TCR-ß profiles for 68 human samples were generated via deep sequencing using the Illumina HiSeq 2500 system and reagents. Of those profiled, 20 were not diagnosed as having HAM/TSP or MS (i.e., Healthy Control, "HC"), 14 were diagnosied as having HAM/TSP, and 34 were diagnosed as having MS.
Comprehensive Analysis of TCR-β Repertoire in Patients with Neurological Immune-mediated Disorders.
Sex, Age, Specimen part, Disease, Race, Subject
View Samples