In a cross-site study we evaluated the performance of ribosomal RNA removal kits from Illumina, Takara/Clontech, Kapa Biosystems, Lexogen, New England Biolabs and Qiagen on intact and degraded RNA samples. We found that all of the kits were capable of performing significant ribosomal depletion, though there were differences in their ease of use. All kits were able to remove ribosomal RNA to below 20% with intact RNA and identify ~14,000 protein coding genes from the Universal Human Reference RNA sample at >1FPKM. Analysis of differentially detected genes among kits suggested that transcript length may be a key factor in library production efficiency. These results provide a roadmap for labs on the strengths of each of these methods and how best to utilize them. Overall design: The Universal Human Reference RNA (Agilent) was diluted to 500 ng/ul in 200ul of RNase-free water and 3.94ul of the Spike-in RNA Variant Control E2 Mix (Lexogen) were added. The sample was split into two aliquots, one of which was then heated at 94° C for 1 hour and 27 minutes. 1ul of ERCC RNA Spike-In Mix 1 was added to both the intact and degraded samples. The final intact and degraded RNA samples were then diluted to 25 ng/uL and were distributed to each of the ten genomics core facilities (members of ABRF) for ribo-depletion and library preparation following vendor protocol. Each site prepared between one and four library types. Indices were assigned by the group to prevent overlapping among libraries. Libraries were pooled at an equimolar concentration from each kit using site-specific quantification and pooling SOPs and return each pool along with individual un-pooled libraries to the designated sequencing site. The sequencing site quantified each pool, multiplexed and sequenced over three high output paired-end 75bp runs on the Illumina NextSeq 500. contributor: The Association of Biomolecular Resource Facilities (ABRF) DNA Sequencing Research Group (DSRG) members
Cross-site comparison of ribosomal depletion kits for Illumina RNAseq library construction.
Subject
View SamplesBACKGROUND: Appendicitis followed by appendectomy (AA) at a young age protects against later inflammatory bowel disease (IBD). Using a novel murine appendicitis model we earlier demonstrated that AA proffered significant protection against subsequent experimental colitis.
Protective pathways against colitis mediated by appendicitis and appendectomy.
Age, Specimen part
View Samples5-aminolevulinic acid (ALA) is the common precursor of all biological synthezised tetrapyrroles. Inhibition of ALA synthesis results in decreased amounts of chlorophylls, heme, siroheme and phytochrome. It was previously shown that 4 out of 5 Arabidopsis mutants uncoupling nuclear gene expression from the physiological state of the chloroplast are affected in plant tetrapyrrole biosynthesis. It is common to all four mutants to show a reduced ALA formation.
Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling.
Age, Specimen part
View SamplesThis analysis represents the first comprehensive sampling of germ cells in the developing testis over time, at high-resolution, single-cell depth. From these analyses, we have not only revealed novel genetic regulatory signatures of murine germ cells over time, but have also demonstrated that cell types positive for a single marker gene have the capacity to change dramatically during testis maturation, and therefore cells of a particular “identity” may differ significantly from postnatal to adult life. Overall design: Single-cell suspensions of mammalian testes ranging from PND6 to adult were processed for single-cell RNAseq (10x Genomics Chromium) and libraries were sequenced on a NextSeq500 (Illumina).
Dynamic transcriptome profiles within spermatogonial and spermatocyte populations during postnatal testis maturation revealed by single-cell sequencing.
Age, Disease, Cell line, Subject
View SamplesNeuroprotective therapies for retinal degeneration may be used to rescue retinal cells and preserve vision. Hypoxic preconditioning stabilizes the transcription factor HIF-1 in the retina and strongly protects photoreceptors in an animal model of light-induced retinal degeneration.
Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection.
No sample metadata fields
View SamplesThe goals of this study are to utilize high-throughput transcriptome sequencing of mutant and control fetal testis samples to identify changes in both transcript and repeat element abundance in tissues harboring a homozygous mutation for Glis3. 672 unique genes were differentially expressed in mutant versus wild-type samples. Of the downregulated genes, there was a strong enrichment for piRNA pathway members, while upregulated genes were associated with leydig cell differentiation, meiosis, and histone cluster genes. Differential expression of several repeat elements was also detected in mutant samples. Our findings provide valuable information on the potential mechanisms underlying the fetal germ cell loss observed in Glis3 mutant testes. Overall design: Whole testis mRNA profiles of embryonic day 14.5 wild type (WT) and Glis3 mutant mice were generated by deep sequencing, using Illumina HiSeq2500
Loss of Glis3 causes dysregulation of retrotransposon silencing and germ cell demise in fetal mouse testis.
Specimen part, Subject
View SamplesIn the following experiment, three different hESC cell lines (HES2, MEL1 and H9) were grown in the presence of KOSR, KOSR or mTESR containing media respectively. KOSR (Knockout serum replacement medium) is a standard media allowing the growth of hESC without the need for manual passaging - Enzymatic passaging is used instread. mTESR (Ludwig et al., 2007) is a media allowing the growth of hESC on matrigel with enzymatic passaging. At day 7 after passaging, these cells were FACs sorted for the presence of GCTM-2 and CD9 into 4 distinct fractions (p4: GCTM-2-neg, CD9-neg; p5: GCTM-2-low, CD9-low; p6: GCTM-2-medium, CD9-medium and p7: GCTM-2-high, CD9-high). For each cell line-subfraction combination, RNA was harvested and subject to microarray.
Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling.
No sample metadata fields
View SamplesHES2 ESCs were grown in standard ES culture conditions. After 1 week, these cells were FACs sorted for the presence of GCTM-2 and CD9.
Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling.
No sample metadata fields
View SamplesTo identify genes affected by mutant huntington protein, we performed mRNA-seq experiments with Striatal STHdh Q7/Q7, Q7Q111, and Q111/Q111 cells. We also tested the effect of Sp1 overexpression on rescuing gene expression in Q111/Q111 cells. Overall design: Striatal STHdh Q7/Q7, Q7/Q111 and Q111/Q111 cells were used for the mRNA-seq in replicates. After Sp1 transient overexpression in Q111/Q111 cells, cells were collected for mRNA-seq analysis.
Real-time imaging of Huntingtin aggregates diverting target search and gene transcription.
Specimen part, Cell line, Subject
View SamplesThe membrane fraction and the cytosolic fraction of HES2 cells were collected and subjected to microarray. The experiment was performed in triplicate
Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling.
No sample metadata fields
View Samples