Purpose: We aimed to identify miRNAs which are induced by the Activin/Nodal effectors, P-Smad2/3, in order to further our understanding of how P-Smad2/3 controls downstream gene expression in mouse ES cells to regulate crucial biological processes. Methods: We used a previously developed Tetracycline-On (Tet-On) system (TAG1) to manipulate the levels of P-Smad2/3 in mouse ES cells and performed an Illumina deep-sequencing screen to identify miRNAs which followed the P-Smad2/3 pathway. Results: We filtered the deep-seq data to identify a list of 28 miRNAs which showed a >1.25 fold increase in response to P-Smad2/3 induction and a >1.25 fold decrease in response to P-Smad2/3 repression. Conclusions: Our study represents a comprehensive global profiling of miRNA expression in response to changes in P-Smad2/3 levels in mouse ES cells. Overall design: miRNA profiles of TAG1 cells which were untreated (control), SB-431541 treated (P-Smad2/3 repressed), or Dox treated (P-Smad2/3 induced), were generated using Illumina GAII.
TGF-β/Smad2/3 signaling directly regulates several miRNAs in mouse ES cells and early embryos.
Specimen part, Subject
View SamplesThe pluripotent mammalian epiblast undergoes unusually fast cell proliferation. This rapid growth is expected to generate a high transcriptional demand, but the underlying mechanisms remain unknown. We report that the chromatin remodeler Chd1, which binds the activating histone mark H3K4me3 and is associated with transcription, is required for development of the mouse epiblast. Chd1-/- embryos exhibit proliferation defects and increased apoptosis, are smaller than controls by E5.5, and fail to grow, become patterned or gastrulate. We show that Chd1-/- ES cells have a self-renewal defect and a genome-wide reduction in transcriptional output that is associated with losses in RNA Pol II elongation at growth-promoting genes, including ribosomal proteins. We also report that Chd1 directly regulates ribosomal RNA transcription and that both Chd1-/- epiblast cells in vivo and ES cells in vitro express significantly lower levels of ribosomal RNA. Single cell analyses reveal abnormal nucleolar morphology in mutants in vivo and in vitro. These data indicate that Chd1 promotes a globally elevated transcriptional output required to sustain the distinct rapid growth of the mouse epiblast. Overall design: Cell-number normalized RNA-seq from wild-type and Chd1-/- mouse embryonic stem cells.
Chd1 is essential for the high transcriptional output and rapid growth of the mouse epiblast.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Analysis of Drosophila STING Reveals an Evolutionarily Conserved Antimicrobial Function.
Specimen part, Treatment
View SamplesAnti-TNF-alpha therapy has made a significant impact on the treatment of psoriasis. Despite being designed to neutralize TNF-alpha activity, the mechanism of action of these agents in the resolution of psoriasis remains unclear. The aim of this study was to better understand the mechanism of action of etanercept by examining very early changes in the lesional skin of psoriasis patients. 20 chronic plaque psoriasis patients were enrolled and received 50mg etanercept twice weekly. Skin biopsies were obtained before treatment and on days 1, 3, 7 and 14 post-treatment. Skin mRNA expression was analysed by microarray.
Early tissue responses in psoriasis to the antitumour necrosis factor-α biologic etanercept suggest reduced interleukin-17 receptor expression and signalling.
Specimen part, Disease, Subject
View SamplesComparison of transcriptome between control and Tcf1/Lef1-deficient hematopoietic stem cells (HSCs). Overall design: Flt3-negative, lineage-negative, Sca1+ and cKit+ cells (Flt3-LSKs) were sorted from bone marrow cells from control mice or those are deficient for Tcf1 and Lef1 transcription factors. Both genes were conditionally deleted using Vav-Cre
Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1.
No sample metadata fields
View SamplesFinding diffrential gene expression gene expression in the livers of male mice after the deletion of Akt1 in th eliver of Akt2-/- mice. Overall design: mRNA was isolated from 4 indivdual livers of each group of mice of the same genotype. mRNAs from each group was pooled to generate 1 sample per each group. The 2 samples were used to generate cDNA libraries for RNA-seq.
Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms.
Specimen part, Cell line, Subject
View SamplesA few reports have implicated specific lncRNAs in cardiac development or failure, but precise details of lncRNAs expressed in hearts and how their expression may be altered during embryonic heart development or by adult heart disease is unknown. By comparing lncRNA profiles of normal embryonic (~E14), normal adult, and hypertrophied adult hearts we defined a distinct fetal lncRNA abundance signature that includes 157 lncRNAs differentially expressed compared to adults (fold-change = 50%, FDR=0.02), and which was only poorly recapitulated in hypertrophied hearts (17 differentially expressed lncRNAs; 13 of these observed in embryonic hearts). Analysis of protein-coding mRNAs from the same samples identified 22 concordantly and 11 reciprocally regulated mRNAs within 10 kb of dynamically expressed lncRNAs, reciprocal relationships of lncRNA and mRNA levels was validated for the Mccc1 and Relb genes using in vitro lncRNA knockdown in C2C12 cells. Network analysis suggested a central role for lncRNAs in modulating NFkappaB- and CREB1-regulated genes during embryonic heart growth and identified multiple mRNAs within these pathways that are also regulated, but independently of lncRNAs. Overall design: Cardiac polyadenylated RNA (mRNA and lncRNA) profiles were generated from C57BL/6J mouse hearts were generated on Illumina HiSeq 2000 instruments. 7 independent E13.5 hearts, 12 adult hearts (6 at 6 weeks of age, 6 at 16 weeks of age), 4 sham-operated hearts at 12 weeks of age, and 4 hearts after 4 weeks of pressure overload (TAC) at 12 weeks of age.
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs.
No sample metadata fields
View SamplesUnder defined differentiation conditions human embryonic stem cells (hESCs) can be directed toward a mesendodermal (ME) or neuroectoderm (NE) fate, the first decision during hESC differentiation. Coupled with G1 lengthening a divergent ciliation pattern emerged within the first 24 hours of induced lineage specification and these changes heralded a neuroectoderm decision before any neural precursor markers were expressed. By day 2, increased ciliation in NE precursors induced autophagy that resulted in the inactivation of Nrf2. Nrf2 binds directly to upstream regions of the OCT4 and NANOG genes to promote their expression and represses NE derivation. Nrf2 suppression was sufficient to rescue poorly neurogenic iPSC lines. Only after these events have been initiated do neural precursor markers get expressed at day 4. Thus we have identified a primary cilium-autophagy-Nrf2 (PAN) axis coupled to cell cycle progression that directs hESCs toward NE. Overall design: Transcriptome analysis of hESC-derived neuroectoderm and mesendoderm cells
Primary Cilium-Autophagy-Nrf2 (PAN) Axis Activation Commits Human Embryonic Stem Cells to a Neuroectoderm Fate.
No sample metadata fields
View SamplesCells from three adult, wild-type, FVB hearts were separated into cardiomyocyte and nonmyocyte fractions using Langendorff perfusion, collagenase digestion and gravity filtration. Total RNA was prepared immediately from myocytes, while nonmyocytes were passaged twice to yield a culture from which total RNA was prepared. Overall design: 6 cardiac polyadenylated RNA (mRNA and lncRNA) and small RNA (microRNA) profiles of isolated cardiomyocytes (CM) and nonmyocytes (fibro) from 12-wk FVB/NJ mouse hearts were generated on Illumina HiSeq 2000 instruments.
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs.
No sample metadata fields
View SamplesPurpose: Next-generation sequencing (NGS) provides for quantitation of RNA abundances and comparison of RNA abundances within tissues and cells in a manner not possible with previous microarray technologies. 5 female mice were subjected to a sham operation, and 5 female mice were subjected to transverse aortic constriction (TAC). After 1 week, hearts were harvested and polyadenylated RNAs were profiled. Analyzed data have been published in Hu et al., Proc Natl Acad Sci USA. 2012;109(48):19864-9, PMID: 23150554 Overall design: 10 cardiac polyA+-RNA profiles of 9 week-old FVB/NJ wild type (WT) mice (5 female sham, 5 female TAC) were generated on Illumina HiSeq 2000 instruments.
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs.
No sample metadata fields
View Samples