Mesenchymal stromal cells (MSCs) are multipotent stem cells with potent immunosuppressive and trophic support functions. Although bone marrow is considered the golden standard to isolate classical MSCs (BM-MSC), MSC-like cells are currently also derived from other, more easily accessible extra-embryonic tissues such as the umbilical cord. In this study we compared the gene expression profile of human Wharton's jelly explant-derived MSC cultures with two adult MSC populations derived from bone marrow, namely BM-MSC and multipotent adult progenitor cells (MAPC).
Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells.
Specimen part
View SamplesHypocalcemic vitamin D analogs are appealing molecules to exploit the immunomodulatory actions of active vitamin D in vivo. The functional modulation of dendritic cells is regarded as the key mechanism underlying their ability to regulate T cell responses. In contrast, the direct actions of vitamin D and structural analogs on T lymphocytes remain less well characterized.
The vitamin D analog, TX527, promotes a human CD4+CD25highCD127low regulatory T cell profile and induces a migratory signature specific for homing to sites of inflammation.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.
Specimen part, Cell line
View SamplesAnalysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.
Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.
Specimen part, Cell line
View SamplesAnalysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.
Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.
Specimen part, Cell line
View SamplesCoexpression of alpha-synuclein and p25alpha in an oligodendroglial cell line elicites a degenerative response that relies on aggregation and phosphorylation of alpha-synuclein at Ser129
Prodegenerative IκBα expression in oligodendroglial α-synuclein models of multiple system atrophy.
Cell line, Time
View SamplesNon-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA profile for timecourse of neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124).
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.
Subject
View SamplesNon-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA interacting protein immunoprecipitation with AGO2 for miR-124 target enrichment from neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124) and subsequent sequencing.
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.
Subject
View Samples