Gene expression profiling in arterial tissue from type 2 diabetic patients
Fibulin-1 is a marker for arterial extracellular matrix alterations in type 2 diabetes.
No sample metadata fields
View SamplesCF patients suffer from chronic and recurrent respiratory tract infections which eventually lead to lung failure followed by death. Pseudomonas aeruginosa is one of the major pathogens for CF patients and is the principal cause of mortality and morbidity in CF patients.
Bacterial adaptation during chronic infection revealed by independent component analysis of transcriptomic data.
No sample metadata fields
View SamplesProstate cancer is a leading cause of cancer death amongst males. The main clinical dilemma in treating prostate cancer is the high number of indolent cases that confer a significant risk of over diagnosis and over treatment. In this study we have performed a genome expression profiling of tumor tissue specimens from 36 patients with prostate cancer to identify transcripts that delineate aggressive and indolent cancer. We included normal prostate biopsies from 14 patients in our analysis. Unsupervised hierarchical cluster analysis separated the cancer samples into two groups with a significant overrepresentation of tumors from patients with biochemical recurrence in one of the groups (Chi2, p=0.02). The samples were separated by basically three clusters of genes that showed differential expression between the two sample clusters - totaling 371 transcripts. Ingenuity Pathway Analysis revealed that one cluster contained genes associated with invasive properties of the tumor, another genes associated with the cell cycle, and the last cluster genes involved in several biological functions. We successfully validated the transcripts association with recurrence using two publicly available patient datasets totaling 669 patients. Twelve genes were found to be independent predictors of recurrence in multivariate logistical regression analysis.
Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy.
Age, Specimen part
View SamplesGene expression of P. aerruginosa changes after short-term exposure to ciprofloxacin at sub-inhibitory concentrations but the effect of long-term exposure which select for the most fitted subpopulations is not known.
The phenotypic evolution of Pseudomonas aeruginosa populations changes in the presence of subinhibitory concentrations of ciprofloxacin.
No sample metadata fields
View SamplesPurpose: Aerobic capacity is a strong predictor of cardiovascular mortality. To determine the relationship between inborn aerobic capacity and soleus gene expression we examined genome-wide gene expression in soleus muscle of rats artificially selected for high and low running capacity (HCR and LCR, respectively) over 16 generations. The artificial selection of LCR caused accumulation of risk factors of cardiovascular disease similar to the metabolic syndrome seen in man, whereas HCR had markedly better cardiac function. We also studied alterations in gene expression in response to exercise training in the two groups, since accumulating evidence indicates that exercise has profound beneficial effects on the metabolic syndrome.
Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO2max.
No sample metadata fields
View SamplesAerobic capacity is a strong predictor of cardiovascular mortality. To determine the relationship between aerobic capacity and cardiac gene expression we examined genome-wide gene expression in hearts of rats artificially selected for high- and low running capacity (HCR and LCR, respectively) over 16 generations. HCR were born with an athletic phenotype, whereas LCR exhibited features of the metabolic syndrome.
Aerobic capacity-dependent differences in cardiac gene expression.
Sex
View SamplesIn the present in vitro study, interactions between P. aeruginosa (sessile biofilms as well as planktonic cells) and PMNs were analyzed by means of DNA microarray based transcriptomics. We found that the P. aeruginosa wild type biofilms, in contrast to planktonic cultures and quorum sensing (QS) deficient strains, respond to PMN exposure in a rather aggressive manner. The response does not involve protective mechanisms such as those involved in oxidative stress. Rather it is dominated by QS controlled virulence determinants such as those encoded by pqs, phz, rhlAB, all of which are designed to cripple Eukaryotic cells including PMNs and macrophages. Our comparative analysis supports the view that QS plays a major role in mechanisms by which P. aeruginosa evades host defense systems.
Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes.
No sample metadata fields
View SamplesThe intercalated disc of cardiac myocytes is emerging as a crucial structure in the heart. Loss of intercalated disc proteins like N-cadherin causes lethal cardiac abnormalities, mutations in intercalated disc proteins cause human cardiomyopathy. A comprehensive screen for novel mechanisms in failing hearts demonstrated that expression of the lysosomal integral membrane protein-2 (LIMP-2) is increased in cardiac hypertrophy and heart failure in both rat and human myocardium. Complete loss of LIMP-2 in genetically engineered mice did not affect cardiac development; however these LIMP-2 null mice failed to mount a hypertrophic response to increased blood pressure but developed cardiomyopathy. Disturbed cadherin localization in these hearts suggested that LIMP-2 has important functions outside lysosomes. Indeed, we also find LIMP-2 in the intercalated disc, where it associates with cadherin. RNAi-mediated knockdown of LIMP-2 decreases the binding of phosphorylated b-catenin to cadherin, while overexpression of LIMP-2 has the opposite effect. Taken together, our data show that lysosomal integrated membrane protein-2 is crucial to mount the adaptive hypertrophic response to cardiac loading. We demonstrate a novel role for LIMP-2 as an important mediator of the intercalated disc.
Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy.
No sample metadata fields
View Samples