The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased, and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts the degree of this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes. Overall design: RNAseq was performed in control, ?WAPL 3.3, ?WAPL 1.14, ?SCC4 and ?WAPL/?SCC4 cells in triplicate.
The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension.
Cell line, Subject
View SamplesWe report that increased nutrient availability increases breeding success and egg production. RNA-seq analysis revealed that parental diet altered the expression of metabolic genes in the unfertilized eggs. Offspring from the differentially fed parents showed altered survival and energy expenditure as adults. Overall design: RNA from unfertilized eggs after two parental diets.
Dietary Intake Influences Adult Fertility and Offspring Fitness in Zebrafish.
No sample metadata fields
View SamplesNa+/I- symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. A better understanding of the mechanisms of NIS regulation in breast cancer may lead to strategies for increasing cell surface NIS and radioactive iodide uptake (RAIU) in breast cancer. The MCF-7 cell line is the only human breast cancer cell line with inducible endogenous NIS expression. Kogai et al. [2000] first reported that trans-retinoic acid (tRA) induces NIS mRNA expression in MCF-7 cells and it was later reported that a combination treatment of tRA and hydrocortisone (tRA/H) further increases tRA-induced NIS expression/function in MCF-7 cells (Kogai et al., 2005; Dohan et al., 2006). In this study, we used gene expression profiling to identify genes that correlate with NIS expression in MCF-7 cells such that mechanisms underlying NIS modulation may be elucidated.
Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer.
Specimen part, Cell line
View SamplesOur hypothesis was that at any given point in time, islets will contain differing populations of beta cells at different stages of their lifecycle, with further changes occurring with metabolic stress and aging. We examined subpopulations of beta cells isolated from MIP-GFP mice on the basis of their insulin transcriptional activity and in their expression of p16Ink4a. In addition, using aging C57Bl/6 mice as a model, markers of beta cell aging were identified and validated: Igf1r and Cd99 expression increased with age, whereas Kcnq5 was decreased with age. These markers were correlated with an age-related decline in function. The functional aging of beta cells was accelerated by S961, an antagonist to the insulin receptor, which induced insulin resistance. Particularly surprising was the finding of marked islet heterogeneity as demonstrated with the marked staining differences of the markers: Igf1r, Cd99 and Kcnq5. These novel findings about beta cell and islet heterogeneity, and how they change with age, open up an entirely new set of questions that must be addressed about the pathogenesis of type 2 diabetes. The present study has identified new markers of aging in beta cells and found that the expression of these and other markers can be increased by insulin resistance. This provides insight into how insulin resistance might accelerate the death of beta cells. In addition, striking heterogeneity among islets was found, which opens up new ways to think about islet biology and the pathogenesis of T2D.
β Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistance.
Age, Specimen part
View SamplesTranscript dynamics in mitotic exit mutants in the S. cerevisiae BF264-15D strain background. We examined the extent to which periodic cell-cycle transcription persisted in cells arrested in anaphase with intermediate level of B-cyclins.
Reconciling conflicting models for global control of cell-cycle transcription.
No sample metadata fields
View SamplesDuring HIV-1 infection, there is a massive perturbation of host gene expression, but as yet, genome-wide studies have not identified host genes affecting HIV-1 replication in lymphatic tissue, the primary site of virus-host interactions. In this study, we isolated RNA from the inguinal lymph nodes of 22 HIV-1-infected individuals and utilized a microarray approach to identify host genes critically important for viral replication in lymphatic tissue by examining gene expression associated with viral load. Strikingly, ~95% of the transcripts (558) in this data set (592 transcripts total) were negatively associated with HIV-1 replication. Genes in this subset (1) inhibit cellular activation/proliferation (ex.: TCFL5, SOCS5 and SCOS7, KLF10), (2) promote heterochromatin formation (ex.: HIC2, CREBZF, ZNF148/ZBP-89), (3) increase collagen synthesis (ex.: PLOD2, POSTN, CRTAP), and (4) reduce cellular transcription and translation. Potential anti-HIV-1 restriction factors were also identified (ex.: NR3C1, HNRNPU, PACT). Only ~5% of the transcripts (34) were positively associated with HIV-1 replication. Paradoxically, nearly all these genes function in innate and adaptive immunity, particularly highlighting a heightened interferon system. The predominance of negative correlations as well as the disconnect between host defenses and viral load point to the importance of genes that regulate target cell activation and genes that code for potentially new restriction factors as determinants of viral load rather than conventional host defenses.
Host genes associated with HIV-1 replication in lymphatic tissue.
Sex, Age, Specimen part, Race
View SamplesBackground: ETV6/RUNX1 (E/R) (also known as TEL/AML1) is the most frequent gene fusion in childhood acute lymphoblastic leukemia (ALL) and also most likely the crucial factor for disease initiation, whereas its role in leukemia propagation and maintenance remains largely elusive. To address this issue we performed a shRNA-mediated knock-down (KD) of the E/R fusion gene and investigated the ensuing consequences on genome-wide gene expression patterns and deducible regulatory functions in two E/R-positive leukemic cell lines. Findings: Microarray analyses identified 777 genes whose expression was substantially altered. Although approximately equal proportions were either up- (KD-UP) or down-regulated (KD-DOWN), the effects on biological processes and pathways differed considerably. The E/R KD-DOWN set was significantly enriched for genes included in the cell activation, immune response, apoptosis, signal transduction and development and differentiation categories, whereas in the E/R KD-UP set only the PI3K/AKT/mTOR signaling and hematopoietic stem cells categories became evident. Comparable expression signatures obtained from primary E/R-positive ALL samples underline the relevance of these pathways and molecular functions. We also validated six differentially expressed genes representing the categories stem cell properties, B-cell differentiation, immune response, cell adhesion and DNA damage with RT-qPCR. Conclusion: The results of our analyses provide the first preliminary evidence that the continuous expression of the E/R fusion gene interferes with regular B-cell development by repressing key functions that are necessary under physiological circumstances. E/R may thus constitute also the essential driving force for the propagation and maintenance of the leukemic process irrespective of potential consequences of associated secondary changes. Finally, these findings may also provide a valuable source of potentially attractive therapeutic targets.
The leukemia-specific fusion gene ETV6/RUNX1 perturbs distinct key biological functions primarily by gene repression.
Cell line, Treatment
View SamplesDU145 prostate cancer cells were treated with 50 ng/ml FGF19 and 50 ug/ml heparin, or 10 ng/ml TNFalpha, or both
The receptor tyrosine kinase FGFR4 negatively regulates NF-kappaB signaling.
Cell line
View SamplesPrimitive erythropoiesis in the mouse yolk sac is followed by definitive erythropoiesis resulting in adult erythrocytes. In comparison to definitive erythropoiesis little is known about the genes that control the embryonic erythroid program. The purpose of this study was to generate a profile of mouse embryonic yolk sac erythroid cells and identify novel regulatory genes differentially expressed in erythroid compared to non-erythroid (epithelial cells).
Identification of erythroid-enriched gene expression in the mouse embryonic yolk sac using microdissected cells.
No sample metadata fields
View SamplesUntreated HIV-1 infection progresses through acute and asymptomatic stages to AIDS. While each of the three stages has well-known clinical, virologic and immunological characteristics, much less is known of the molecular mechanisms underlying each stage. Here we report lymphatic tissue microarray analyses revealing for the first time stage-specific patterns of gene expression during HIV-1 infection. We show that while there is a common set of key genes with altered expression throughout all stages, each stage has a unique gene-expression signature. The acute stage is most notably characterized by increased expression of hundreds of genes involved in immune activation, innate immune defenses (e.g.MDA-5, TLR-7 and -8, PKR, APOBEC3B, 3F, 3G), adaptive immunity, and in the pro-apoptotic Fas-Fas-L pathway. Yet, quite strikingly, the expression of nearly all acute-stage genes return to baseline levels in the asymptomatic stage, accompanying partial control of infection. In the AIDS stage, decreased expression of numerous genes involved in T cell signaling identifies genes contributing to T cell dysfunction. These common and stage-specific, gene-expression signatures provide new insights into the molecular mechanisms underlying the host response and the slow, natural course of HIV-1 infection.
Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection.
Sex, Age, Specimen part, Disease, Disease stage, Race, Subject
View Samples