MicroRNA-155 is frequently over-expressed in CLL and is associated with worse clinical prognosis. To understand the role of miR-155 in CLL pathogenesis, we used microarrays to identify genes that are expressed at significantly lower levels in CLLs that harbor
MicroRNA-155 regulates casein kinase 1 gamma 2: a potential pathogenetic role in chronic lymphocytic leukemia.
Specimen part
View SamplesThe hormone prolactin is implicated in the pathogenesis of breast cancer, and a subset of prolactin-induced gene expression is mediated by CypA activity.
Inhibition of the Activity of Cyclophilin A Impedes Prolactin Receptor-Mediated Signaling, Mammary Tumorigenesis, and Metastases.
Sex, Specimen part, Disease, Disease stage, Cell line
View SamplesThousands of long intergenic noncoding RNAs (lincRNAs) are encoded by the mammalian genome, which were reported to have multiple biological functions as transcriptional activators acting in cis 1 or trans 2, transcriptional repressors 3,4 or miRNAs decoys 5,6. However, the function of most lincRNAs has not yet been identified in vivo. Here, we demonstrate a role for linc-MYH, a novel long intergenic noncoding RNA, in adult fast-type myofibre specialization. Skeletal myofibre fast and slow phenotypes are established through differential expression of numerous fibre-specific genes7. We show linc-MYH and the fast MYH genes share a common enhancer located in the fast MYH genes locus and regulated by the Six1 homeoproteins. Muscle-specific Six1 mutant mice show increased expression of slow-type genes, and downregulation of linc-MYH and fast-type genes. linc-MYH function revealed by in vivo knockdown and wide transcriptomic analysis, is in fine to prevent expression of genes ensuring slow muscle contractile properties, and to increase fast-type muscle gene expression in fast-type myofibres. Thus, formation of efficient fast sarcomeric units and appropriate Ca++ cycling and excitation/contraction/relaxation coupling in fast- myofibres is achieved through the coordiante control of fast MYHs and linc-MYH expression by a Six bound enhancer.
Six homeoproteins and a Iinc-RNA at the fast MYH locus lock fast myofiber terminal phenotype.
Age, Specimen part
View SamplesPsychological, psychosocial and physical stress are major risk factors, which enhance the development of sporadic late-onset Alzheimer`s disease. The chronic unpredictable mild stress model mimics those risk factors and triggers signs of neurodegeneration and neuropathological features of sporadic AD such as tau hyperphosphorylation and enhanced amyloid beta generation. The study investigated the impact of chronic unpredictable mild stress on signs of neurodegeneration by analyzing hippocampal gene expression with whole genome microarray gene expression profiling.
Inhibition of ACE Retards Tau Hyperphosphorylation and Signs of Neuronal Degeneration in Aged Rats Subjected to Chronic Mild Stress.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cycles in spatial and temporal chromosomal organization driven by the circadian clock.
Specimen part, Disease, Time
View SamplesExpression profiles in WT MEF at different circadian time point after dexamethasone synchronyzation.
Cycles in spatial and temporal chromosomal organization driven by the circadian clock.
Specimen part, Time
View SamplesMesenchymal stem cells (MSCs) and their cellular response to various stimuli have been characterized in great detail in culture conditions. In contrast, the cellular response of MSCs in an in vivo setting is still uncharted territory. In this study, we investigated the cellular response of MSCs following transplantation into spinal cord injury (SCI).Mouse bone marrow-derived MSCs were transplanted 24h following severe contusion SCI in mice. As controls, MSCs transplanted to uninjured spinal cord and non-transplanted MSCs were used. At seven days post transplantation, the MSCs were isolated from the SCI, and their global transcriptional changes investigated using RNA-sequencing. We found that MSCs transplanted into SCI down-regulate their response to cytokines, tendency to adhere and to undergo phagocytosis but up-regulate their ability to repair DNA and proliferate. Overall design: Evaluation of transcriptional changes in transplanted mesenchymal stem cells.
Mesenchymal stem cells transplanted into spinal cord injury adopt immune cell-like characteristics.
Subject
View SamplesCTCF is an organizer of higher-order chromatin structure, and regulates gene expression. Genetic studies have implicated mutations in CTCF in intellectual disabilities. However, there is no knowledge of the role of CTCF-mediated chromatin structure in learning and memory. We show that depletion of CTCF in postmitotic neurons, or depletion in the hippocampus of adult mice through viral-mediated knockout, induces deficits in learning and memory. These deficits in learning and memory at the beginning of adulthood are correlated with impaired long term potentiation and reduced spine density, with no changes in basal synaptic transmission and dendritic morphogenesis and arborization. Cognitive disabilities are associated with downregulation of cadherin and learning-related genes. In addition, CTCF knockdown attenuates fear conditioning-induced hippocampal gene expression of key learning genes and loss of long-range interactions at the BDNF and Arc loci. This study identifies CTCF-dependent gene expression regulation and DNA structure as regulators of learning and memory. Overall design: 3 biological replicates of wild type and 3 biological replicates of CTCF cko mice
Neuronal CTCF Is Necessary for Basal and Experience-Dependent Gene Regulation, Memory Formation, and Genomic Structure of BDNF and Arc.
Specimen part, Cell line, Subject
View SamplesInactivation of the von Hippel-Lindau tumor suppressor gene, VHL, is an archetypical tumor-initiating event in clear cell renal carcinoma (ccRCC) that leads to the activation of hypoxia-inducible transcription factors (HIFs). However, VHL mutation status in ccRCC is not correlated with clinical outcome. Here we show that during ccRCC progression, cancer cells exploit diverse epigenetic alterations to empower a branch of the VHL-HIF pathway for metastasis, and the strength of this activation is associated with poor clinical outcome. By analyzing metastatic subpopulations of VHL-deficient ccRCC cells, we discovered an epigenetically altered VHL-HIF response that is specific to metastatic ccRCC. Focusing on the two most prominent pro-metastatic VHL-HIF target genes, we show that loss of polycomb repressive complex 2 (PRC2)-dependent histone H3 Lys27 trimethylation (H3K27me3) activates HIF-driven chemokine (C-X-C motif) receptor 4 (CXCR4) expression in support of chemotactic cell invasion, whereas loss of DNA methylation enables HIF-driven cytohesin 1 interacting protein (CYTIP) expression to protect cancer cells from death cytokine signals. Thus, metastasis in ccRCC is based on an epigenetically expanded output of the tumor-initiating pathway.
Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer.
Cell line
View SamplesInactivation of the von Hippel-Lindau tumor suppressor gene, VHL, is an archetypical tumor-initiating event in clear cell renal carcinoma (ccRCC) that leads to the activation of hypoxia-inducible transcription factors (HIFs). However, VHL mutation status in ccRCC is not correlated with clinical outcome. Here we show that during ccRCC progression, cancer cells exploit diverse epigenetic alterations to empower a branch of the VHL-HIF pathway for metastasis, and the strength of this activation is associated with poor clinical outcome. By analyzing metastatic subpopulations of VHL-deficient ccRCC cells, we discovered an epigenetically altered VHL-HIF response that is specific to metastatic ccRCC. Focusing on the two most prominent pro-metastatic VHL-HIF target genes, we show that loss of polycomb repressive complex 2 (PRC2)-dependent histone H3 Lys27 trimethylation (H3K27me3) activates HIF-driven chemokine (C-X-C motif) receptor 4 (CXCR4) expression in support of chemotactic cell invasion, whereas loss of DNA methylation enables HIF-driven cytohesin 1 interacting protein (CYTIP) expression to protect cancer cells from death cytokine signals. Thus, metastasis in ccRCC is based on an epigenetically expanded output of the tumor-initiating pathway.
Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer.
Cell line
View Samples