refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 382 results
Sort by

Filters

Technology

Platform

accession-icon SRP073033
Joint-specific DNA transcriptome signatures in rheumatoid arthritis [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Stratifying patients on the basis of molecular signatures could facilitate development of therapeutics that target pathways specific to a particular disease or tissue location. Previous studies suggest that pathogenesis of rheumatoid arthritis (RA) is similar in all affected joints. Here we show that distinct DNA methylation and transcriptome signatures not only discriminate RA fibroblast-like synoviocytes (FLS) from osteoarthritis FLS, but also distinguish RA FLS isolated from knees and hips. Using genome-wide methods, we show differences between RA knee and hip FLS in the methylation of genes encoding biological pathways, such as IL-6 signaling via JAK-STAT pathway. Furthermore, differentially expressed genes are identified between knee and hip FLS using RNA-seq. Double-evidenced genes that are both differentially methylated and expressed include multiple HOX genes. Joint-specific DNA signatures suggest that RA disease mechanisms might vary from joint to joint, thus potentially explaining some of the diversity of drug responses in RA patients. Overall design: Total RNA-seq from knee and hip joints in rheumatoid arthritis (RA)

Publication Title

Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon GSE106260
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE103374
Gene expression assessed by genome wide hybridization bead array in T84 polarized tight monolayers after challenge with celiac disease-associated bacteria and gluten [CTR glut bmix, bmix and gluten]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of the influence of celiac disease-associated bacteria and gluten on intestinal epithelial cells

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE103100
Gene expression assessed by genome wide hybridization bead array in T84 polarized tight monolayers after challenge with celiac disease-associated bacteria and gluten [A grav, Bmix Bmix glut]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of the influence of celiac disease-associated bacteria and gluten on intestinal epithelial cells

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE103107
Gene expression assessed by genome wide hybridization bead array in T84 polarized tight monolayers after challenge with celiac disease-associated bacteria [CTR 22 28 27]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of the influence of celiac disease-associated bacteria on intestinal epithelial cells

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE102993
Gene expression assessed by genome wide hybridization bead array in intraepithelial lymphocytes (IELs) isolated from small intestinal biopsies of celiac disease patients with active disease and clinical controls
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Analysis of role of small intestinal intraepithelial lymphocytes (IELs) in the immunopathology of celiac disease

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE102991
Gene expression assessed by genome wide hybridization bead array in intestinal epithelial cells (IECs) isolated from small intestinal biopsies of celiac disease patients with active disease and clinical controls
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Analysis of role of small intestinal epithelial cells (IECs) in the immunopathology of celiac disease

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20967
Gene expression profiling of vasoregression in the retina
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Vasoregression is a hallmark of vascular eye diseases but the mechanisms involved are still largely unknown. We have recently characterized a rat ciliopathy model which develops primary photoreceptor degeneration and secondary vasoregression. To improve the understanding of secondary vasoregression in retinal neurodegeneration, we used microarray techniques to compare gene expression profiles in this new model before and after retinal vasoregression. Differential gene expression was validated by quantitative RT-PCR, Western blot and immunofluorescence. Of the 374 genes regulated more than twofold, the MHC class II invariant chain CD74 yielded the strongest upregulation, and was allocated to activated microglial cells close to the vessels undergoing vasoregression. Pathway clustering identified genes of the immune system, inflammatory signaling, and components of the complement cascade upregulated during vasoregression. Furthermore, macroglial cells were markedly activated. Together, our data suggest that glial cells involved in retinal immune response participate in the initiation of vasoregression in the retina.

Publication Title

Gene expression profiling of vasoregression in the retina--involvement of microglial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE829
Laminin binding/non-binding germ cells
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2), Affymetrix Murine Genome U74A Array (mgu74a)

Description

Comparison of laminin binding and laminin non-binding germ cells

Publication Title

Defining the spermatogonial stem cell.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE830
Rat germ cells
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Rat germ cells

Publication Title

Defining the spermatogonial stem cell.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact