Levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are increased in lung, sputum, exhaled breath condensate and plasma samples from asthma patients. ADMA is metabolized primarily by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2. We determined the effect of DDAH1 overexpression on development of allergic inflammation in a mouse model of asthma. The expression of DDAH1 and DDAH2 in mouse lungs was determined by RT-quantitative PCR (qPCR). ADMA levels in bronchoalveolar lavage fluid (BALF) and serum samples were determined by mass spectrometry. Wild type and DDAH1-transgenic mice were intratracheally challenged with PBS or house dust mite (HDM). Airway inflammation was assessed by bronchoalveolar lavage (BAL) total and differential cell counts. The levels of IgE and IgG1 in BALF and serum samples were determined by ELISA. Gene expression in lungs was determined by RNA-Seq and RT-qPCR. Our data showed that the expression of DDAH1 and DDAH2 was decreased in the lungs of mice following HDM exposure, which correlated with increased ADMA levels in BALF and serum. Transgenic overexpression of DDAH1 resulted in decreased BAL total cell and eosinophil numbers following HDM exposure. Total IgE levels in BALF and serum were decreased in HDM-exposed DDAH1-transgenic mice compared to HDM-exposed wild type mice. RNA-Seq results showed downregulation of genes in the inducible nitric oxide synthase (iNOS) signaling pathway in PBS-treated DDAH1-transgenic mice versus PBS-treated wild type mice and downregulation of genes in IL-13/FOXA2 signaling pathway in HDM-treated DDAH1-transgenic mice versus HDM-treated wild type mice. Our findings suggest that decreased expression of DDAH1 and DDAH2 in the lungs may contribute to allergic asthma and overexpression of DDAH1 attenuates allergen-induced airway inflammation through modulation of Th2 responses. Overall design: mRNA profiles of WT and DDAH1-transgenic mice treated with PBS or house dust mite (HDM).
Overexpression of dimethylarginine dimethylaminohydrolase 1 attenuates airway inflammation in a mouse model of asthma.
Specimen part, Treatment, Subject
View SamplesInterleukin-31 (IL-31), a T cells derived cytokine which is mainly produced by CD4+ T cells skewed towards Th2 phenotypes. It signals via a heterodimeric receptors composed of IL-31RA and OSMR that is expressed constitutively in epithelial cells and keratinocytes. IL-31 is shown to play a pathogenic role in allergic and inflammatory diseases. Transgenic mice overexpressing IL-31 have a phenotype similar to atopic dermatitis. Here, we studied the role of IL-31 in skin damage by intradermal administration of recombinant IL-31. Notably, IL-31 was sufficient to increase epidermal basal cell proliferation and thickening of the epidermal layer of skin in mice. Analysis of skin transcriptome indicates a significant increase in the transcripts involved in epidermal cell proliferation and pathological skin remodeling. Thus, our study revealed an important role of IL-31 signaling in activating transcriptional programs involved in the pathophysiology of skin diseases. Overall design: mRNA profiles of C57BL/6 mice skin injected with saline and rIL-31 (20µg) via i.d.
IL-31-Driven Skin Remodeling Involves Epidermal Cell Proliferation and Thickening That Lead to Impaired Skin-Barrier Function.
Specimen part, Treatment, Subject
View SamplesPurpose: Evaluate gene expression profiles after inducing differentiation in cultured interstitial cystitis (IC) and control urothelial cells. Materials and Methods: Bladder biopsies were taken from IC patients and controls (women having surgery for stress incontinence). Primary cultures were grown in Keratinocyte Growth Medium with supplements. To induce differentiation, in some plates the medium was changed to DMEM-F12 with supplements. RNA was analyzed with Affymetrix chips. Three nonulcer IC patients were compared with three controls. Results: After inducing differentiation, 302 genes with a described function were altered at least 3-fold with p <0.01 in both IC and control cells. Functions of the162 upregulated genes included cell adhesion (e.g. claudins, occludin, cingulin); urothelial differentiation, retinoic acid pathway and keratinocyte differentiation (e.g. skin cornified envelope components). The 140 downregulated genes included genes associated with basal urothelium (e.g. p63, integrins ?4, ?5 and ?6, basonuclin 1 and extracellular matrix components), vimentin, metallothioneins and members of the Wnt and Notch pathways. Comparing IC vs. control cells after differentiation, only seven genes with a described function were altered at least 3-fold with p <0.01. PI3, SERPINB4, CYP2C8, EFEMP2 and SEPP1 were decreased in IC; AKR1C2 and MKNK1 were increased in IC. Conclusions: Differentiation-associated changes occurred in both IC and control cells. Comparing IC vs. control revealed very few differences. This study may have included IC patients with minimal urothelial deficiency and/or selected the cells that were most robust in culture. Also, the abnormal urothelium in IC may be due to post-translational changes and/or the bladder environment.
Differentiation associated changes in gene expression profiles of interstitial cystitis and control urothelial cells.
Disease
View SamplesPreeclampsia complicates more than 3% of all pregnancies in the United States and Europe. High-risk populations include women with diabetes, dyslipidemia, thrombotic disorders, hyperhomocysteinemia, hypertension, renal diseases, previous preeclampsia, twin pregnancies, and low socioeconomic status. In the latter case, the incidence may increase to 20% to 25%. Preeclampsia is a major cause of maternal and fetal morbidity and mortality. Preeclampsia is defined by systolic blood pressure of more than 140 mm Hg and diastolic blood pressure of more than 90 mm Hg after 20 weeks gestation in a previously normotensive patient, and new-onset proteinuria. Abnormal placentation associated with shallow trophoblast invasion (fetal cells from outer cell layer of the blastocyst) into endometrium (decidua) and improper spiral artery remodeling in the decidua are initial pathological steps.
Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia.
No sample metadata fields
View SamplesMicroarray analysis of gene expression in the olfactory epithelium of Harlequin mouse as a model of oxidative-stress induced neurodegeneration of olfactory sensory neurons
Cellular and molecular characterization of oxidative stress in olfactory epithelium of Harlequin mutant mouse.
No sample metadata fields
View SamplesTumor growth and metastasis is controlled by paracrine signaling between cells of the tumor microenvironment and malignant cells. Cancer-associated fibroblasts (CAFs), are functionally important components of the tumor microenvironment. Although some steps involved in the cross-talk between these cells are known, there is still a lot that is not clear. Thus, the addition of, the consideration of microenvironment in the development of the disease, to the clinical and pathological procedures (currently admitted as the consistent value cancer treatments) could lay the foundations for the development of new treatment strategies to control the disease.
Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature.
Specimen part
View SamplesMicroarray analysis of gene expression in the olfactory epithelium of macrophage depleted mice to study the role of macrophages in regulating neurodegeneration, neuroprotection, and neurogenesis of olfactory sensory neurons
Macrophage-mediated neuroprotection and neurogenesis in the olfactory epithelium.
No sample metadata fields
View SamplesGlobal analysis of gene expression in 10 day old brm-101 and syd-2 mutant seedlings compared to wild type Landsberg erecta seedlings.
Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED.
Age
View SamplesThe dendritic cell (DC) is a master regulator of immune responses. Pathogenic viruses subvert normal immune function in DCs through the expression of immune antagonists. Understanding how these antagonists interact with the host immune system requires knowledge of the underlying genetic regulatory network that operates during an uninhibited antiviral response. In order to isolate and identify this network, we studied DCs infected with Newcastle Disease Virus (NDV), which is able to stimulate innate immunity and DC maturation through activation of RIG-I signaling, but lacks the ability to evade the human interferon response. To analyze this experimental model, we developed a new approach integrating genome-wide expression kinetics and time-dependent promoter analysis. We found that the genetic program underlying the antiviral cell state transition during the first 18-hours post-infection could be explained by a single regulatory network. Gene expression changes were driven by a step-wise multi-factor cascading control mechanism, where the specific transcription factors controlling expression changed over time. Within this network, most individual genes are regulated by multiple factors, indicating robustness against virus-encoded immune evasion genes. In addition to effectively recapitulating current biological knowledge, we predicted, and validated experimentally, antiviral roles for several novel transcription factors. More generally, our results show how a genetic program can be temporally controlled through a single regulatory network to achieve the large-scale genetic reprogramming characteristic of cell state transitions.
Antiviral response dictated by choreographed cascade of transcription factors.
Specimen part, Subject
View SamplesPolymorphisms in the interleukin-4 receptor chain (IL-4R) have been linked to asthma incidence and severity, but a causal relationship has remained uncertain. In particular, a glutamine to arginine substitution at position 576 (Q576R) of IL-4R has been associated with severe asthma, especially in African Americans. We show that mice carrying the Q576R polymorphism exhibited intense allergen-induced airway inflammation and remodeling. The Q576R polymorphism did not affect proximal signal transducer and activator of transcription (STAT) 6 activation, but synergized with STAT6 in a gene target and tissue-specific manner to mediate heightened expression of a subset of IL-4 and IL-13responsive genes involved in allergic inflammation. Our findings indicate that the Q576R polymorphism directly promotes asthma in carrier populations by selectively augmenting IL-4Rdependent signaling.
Pathogenicity of a disease-associated human IL-4 receptor allele in experimental asthma.
No sample metadata fields
View Samples