refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 63 results
Sort by

Filters

Technology

Platform

accession-icon GSE22432
TGF-1 Accelerates Dendritic Cell Differentiation from Common Dendritic Cell Progenitors (CDPs) and Directs Subset Specification Towards Conventional Dendritic Cells
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dendritic cells (DCs) in lymphoid tissue comprise conventional DCs (cDCs) and plasmacytoid DCs (pDCs) that develop from common DC progenitors (CDPs). CDPs are Flt3+c-kitintM-CSFR+ and reside in bone marrow. Here we describe a two-step culture system that recapitulates DC development from c-kithiFlt3-/lo multipotent progenitors (MPPs) into CDPs and further into cDC and pDC subsets. MPPs and CDPs are amplified in vitro with Flt3 ligand, stem cell factor, hyper-IL-6 and insulin- like growth factor-1. The four-factor cocktail readily induces self-renewal of MPPs and their progression into CDPs and has no self-renewal activity on CDPs. The amplified CDPs respond to all known DC poietins and generate all lymphoid tissue DCs in vivo and in vitro. Additionally, in vitro CDPs recapitulate the cell surface marker and gene expression profile of in vivo CDPs and possess a DC-primed transcription profile. Transforming growth factor-1 (TGF-1) impacts on CDPs and directs their differentiation towards cDCs. Genome-wide gene expression profiling of TGF-1-induced genes identified transcription factors, such as interferon regulatory factor-4 (IRF-4) and RelB, that are implicated as instructive factors for cDC subset specification. TGF-1 also induced the transcription factor inhibitor of differentiation/DNA binding 2 (Id2) that suppresses pDC development. Thus, TGF-1 directs CDP differentiation into cDC by inducing both cDC instructive factors and pDC inhibitory factors.

Publication Title

TGF-beta1 accelerates dendritic cell differentiation from common dendritic cell progenitors and directs subset specification toward conventional dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29241
Dendritic cell lineage commitment is instructed by distinct cytokine signals
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dendritic cells (DC) develop from hematopoietic stem cells, which is guided by instructive signals through cytokines. DC development progresses from multipotent progenitors (MPP) via common DC progenitors (CDP) into DC. Flt3 ligand (Flt3L) signaling via the Flt3/Stat3 pathway is of pivotal importance for DC development under steady state conditions. Additional factors produced during steady state or inflammation, such as TGF-beta1 or GM-CSF, also influence the differentiation potential of MPP and CDP. Here, we studied how gp130, GM-CSF and TGF-beta1 signaling influence DC lineage commitment from MPP to CDP and further into DC. We observed that activation of gp130 signaling promotes expansion of MPP. Additionally, gp130 signaling inhibited Flt3L-driven DC differentiation, but had little effect on GM-CSF-driven DC development. The inflammatory cytokine GM-CSF induces differentiation of MPP into inflammatory DC and blocks steady state DC development. Global transcriptome analysis revealed a GM-CSF-driven gene expression repertoire that primes MPP for differentiation into inflammatory DC. Finally, TGF-beta1 induces expression of DC-lineage affiliated genes in MPP, including Flt3, Irf-4 and Irf-8. Under inflammatory conditions, however, the effect of TGF- beta1 is altered: Flt3 is not upregulated, indicating that an inflammatory environment inhibits steady state DC development. Altogether, our data indicate that distinct cytokine signals produced during steady state or inflammation have a different outcome on DC lineage commitment and differentiation.

Publication Title

Dendritic cell lineage commitment is instructed by distinct cytokine signals.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE2375
Undifferentiated mouse embryonic stem cells, differentiated nestin-positive cells and fibroblast feeder layer.
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Embryonic stem (ES) cells and ES cell-derived progeny characterized by nestin expression (including neural progenitors) were studied (three independent experiments). The mouse ES cell line R1 was cultured on a feeder layer of mouse embryonic fibroblasts (FL). ES cells were differentiated into nestin-positive cells for 4+8 days and 4+11 days according to the differentiation protocol by Rolletschek et al. (Mechanisms of Development 105, 93-104, 2001).

Publication Title

Pluripotency associated genes are reactivated by chromatin-modifying agents in neurosphere cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-2
Transcription profiling time series of hematopoietic progenitor cells treated with TNFalpha as they differentiate to dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a), Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Dendritic Cell differentiation - Transcription Regulator cluster follow-up: The data files associated to this experiment show gene expression levels for a subset of 481 transcripts (out of 12626 genes represented on Affymetrix Genechip HG_U95Av2) corresponding to Transcription Regulators whose expression is changed during the differentiation process of Dendritic Cells as assessed in the 9 conditions tested. Another subset of genes, corresponding to a cluster of CD molecules is available from E-MEXP-1 experiment.

Publication Title

Transcriptional profiling identifies Id2 function in dendritic cell development.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon SRP058229
Distinct murine mucosal Langerhans cell subsets develop from pre-DCs and monocytes
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Langerhans cells (LCs) populate the mucosal epithelium, a major entry portal for pathogens, yet their ontogeny remains unclear. In contrast to skin LCs originating from self-renewing radioresistant embryonic precursors, we found that oral mucosal LCs derive from circulating radiosensitive precursors. Mucosal LCs can be segregated into CD103+CD11blow (CD103+LCs) and CD11b+CD103- (CD11b+LCs) subsets. We further demonstrated that similar to non-lymphoid dendritic cells (DCs), CD103+LCs originate from pre-DCs, whereas CD11b+LCs differentiate from both pre-DCs and monocytic precursors. Despite this ontogenetic discrepancy between skin and mucosal LCs, transcriptomic signature and immunological function of oral LCs highly resemble those of skin LCs but not DCs. These findings, along with their epithelial position, morphology and expression of LC-associated phenotype strongly suggest that oral mucosal LCs are genuine LCs. Collectively, in a tissue-dependent manner, murine LCs differentiate from at least three distinct precursors (embryonic, pre-DCs and monocytic) in steady state Overall design: The following cells were isolated from mice (2-4 replicates): Lung DCs, mucosal CD103+ LC, mucosal CD11b+ LC, Skin LC. Transcriptome analysis was performed.

Publication Title

Distinct Murine Mucosal Langerhans Cell Subsets Develop from Pre-dendritic Cells and Monocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE89050
Gene expression profiling of three human prostate epithelial subpopulations
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The human prostate epithelium is predominantly comprised of two cell-types: basal and luminal. While basal cells exhibit significant progenitor activity in a variety of functional assays, luminal cells are depleted of this activity. Recent studies indicate that approximately 1% of luminal cells exhibit progenitor activity. We have discovered that differential expression of the glycoprotein CD38 can fractionate the luminal population into two subsets: CD38+ and CD38-low. In functional assays, the CD38-low luminal cells exhibit roughly 5-fold increased progenitor activity compared to the remaining CD38+ population. Therefore, we propose that CD38-low luminal cells represent an enriched luminal progenitor population while the CD38+ subset is predominantly comprised of mature non-progenitor luminal cells.

Publication Title

Low CD38 Identifies Progenitor-like Inflammation-Associated Luminal Cells that Can Initiate Human Prostate Cancer and Predict Poor Outcome.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE5258
Connectivity Map dataset (build01)
  • organism-icon Homo sapiens
  • sample-icon 346 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A reference collection of genome-wide transcriptional expression data for bioactive small molecules.

Publication Title

The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE106950
Genome-wide analysis of PDX1 target genes in human pancreatic progenitors
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106813
Genome-wide analysis of PDX1 target genes in human pancreatic progenitors [expression profiling]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Objective: Homozygous loss-of-function mutations in the gene coding for the homeobox transcription factor (TF) PDX1 leads to pancreatic agenesis, whereas heterozygous mutations can cause Maturity-Onset Diabetes of the Young 4 (MODY4). Although the function of Pdx1 is well studied in pre-clinical models during insulin-producing -cell development and homeostasis, it remains elusive how this TF controls human pancreas development by regulating a downstream transcriptional program. Furthermore, many studies reported the association between single nucleotide polymorphisms (SNPs) and T2DM and it has been shown that islet enhancers are enriched in T2DM-associated SNPs. Whether regions, harboring T2DM-associated SNPs are PDX1 bound and active at the pancreatic progenitor stage has not been reported so far.

Publication Title

Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43651
Regulation of the epithelial adhesion molecule CEACAM1 is essential for palate formation.
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at the various developmental stages before, during, and after palate fusion using GeneChip? microarrays. Ceacam1 was one of the highly up-regulated genes during and after fusion in palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was expressed at a very low level in palatal epithelium before fusion, but highly expressed in the midline of the palate during and after fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1-/-) mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1-/- mice. TGF?3 expression, apoptosis, and cell proliferation in palatal epithelium were not effected in the palate of Ceacam1-/-mice. CEACAM1 expression was down-regulated in Tgfb3-/- palate. However, exogenous TGF?3 did not induce CEACAM1 expression. These results suggest that CEACAM1 has roles in both the initiation of palate formation via epithelial cell adhesion and TGF signaling has some indirect effect on CEACAM1.

Publication Title

Regulation of the epithelial adhesion molecule CEACAM1 is important for palate formation.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact