refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 175 results
Sort by

Filters

Technology

Platform

accession-icon GSE90805
Mesenchymal differentiation of neuroblastoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in neuroblastoma.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE92988
Expression data from microRNA-520f transfected PANC-1 pancreas carcinoma cells.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

MicroRNA-520f regulates EMT, as it activates CDH1 (mRNA) and E-cadherin (protein) expression, and it suppresses tumor cell invasion. We have characterized miR-520f target genes through whole genome transcriptional profiling of miRNA transfected pancreas cancer cells (PANC-1).

Publication Title

miRNA-520f Reverses Epithelial-to-Mesenchymal Transition by Targeting <i>ADAM9</i> and <i>TGFBR2</i>.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE17254
Comparative analysis of gene regulation by the transcription factor PPAR between mouse and human
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Studies in mice have shown that PPAR is an important regulator of hepatic lipid metabolism and the acute phase response. However, little information is available on the role of PPAR in human liver. Here we set out to compare the function of PPAR in mouse and human hepatocytes via analysis of target gene regulation. Primary hepatocytes from 6 human and 6 mouse donors were treated with PPAR agonist Wy14643 and gene expression profiling was performed using Affymetrix GeneChips followed by a systems biology analysis. Baseline PPAR expression was similar in human and mouse hepatocytes. Depending on species and time of exposure, Wy14643 significantly induced the expression of 362-672 genes. Surprisingly minor overlap was observed between the Wy14643-regulated genes from mouse and human, although more substantial overlap was observed at the pathway level. Xenobiotics metabolism and apolipoprotein synthesis were specifically regulated by PPAR in human hepatocytes, whereas glycolysis-gluconeogenesis was regulated specifically in mouse hepatocytes. Most of the genes commonly regulated in mouse and human were involved in lipid metabolism and many represented known PPAR targets, including CPT1A, HMGCS2, FABP, ACSL, and ADFP. Several genes were identified that were specifically induced by PPAR in human (MBL2, ALAS1, CYP1A1, TSKU) or mouse (Fbp2, lgals4, Cd36, Ucp2, Pxmp4). Furthermore, several putative novel PPAR targets were identified that were commonly regulated in both species, including CREB3L3, KLF10, KLF11 and MAP3K8. Our results suggest that PPAR activation has a major impact on gene regulation in human hepatocytes. Importantly, the role of PPAR as master regulator of hepatic lipid metabolism is generally well-conserved between mouse and human. Overall, however, PPAR regulates a mostly divergent set of genes in mouse and human hepatocytes.

Publication Title

Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human.

Sample Metadata Fields

Sex, Age, Specimen part, Subject, Time

View Samples
accession-icon GSE17251
Comparative analysis of gene regulation by the transcription factor PPAR_human
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Studies in mice have shown that PPAR is an important regulator of hepatic lipid metabolism and the acute phase response. However, little information is available on the role of PPAR in human liver. Here we set out to compare the function of PPAR in mouse and human hepatocytes via analysis of target gene regulation. Primary hepatocytes from 6 human and 6 mouse donors were treated with PPAR agonist Wy14643 and gene expression profiling was performed using Affymetrix GeneChips followed by a systems biology analysis. Baseline PPAR expression was similar in human and mouse hepatocytes. Depending on species and time of exposure, Wy14643 significantly induced the expression of 362-672 genes. Surprisingly minor overlap was observed between the Wy14643-regulated genes from mouse and human, although more substantial overlap was observed at the pathway level. Xenobiotics metabolism and apolipoprotein synthesis were specifically regulated by PPAR in human hepatocytes, whereas glycolysis-gluconeogenesis was regulated specifically in mouse hepatocytes. Most of the genes commonly regulated in mouse and human were involved in lipid metabolism and many represented known PPAR targets, including CPT1A, HMGCS2, FABP, ACSL, and ADFP. Several genes were identified that were specifically induced by PPAR in human (MBL2, ALAS1, CYP1A1, TSKU) or mouse (Fbp2, lgals4, Cd36, Ucp2, Pxmp4). Furthermore, several putative novel PPAR targets were identified that were commonly regulated in both species, including CREB3L3, KLF10, KLF11 and MAP3K8. Our results suggest that PPAR activation has a major impact on gene regulation in human hepatocytes. Importantly, the role of PPAR as master regulator of hepatic lipid metabolism is generally well-conserved between mouse and human. Overall, however, PPAR regulates a mostly divergent set of genes in mouse and human hepatocytes.

Publication Title

Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human.

Sample Metadata Fields

Sex, Age, Specimen part, Subject, Time

View Samples
accession-icon GSE17250
Comparative analysis of gene regulation by the transcription factor PPAR_mouse
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Studies in mice have shown that PPAR is an important regulator of hepatic lipid metabolism and the acute phase response. However, little information is available on the role of PPAR in human liver. Here we set out to compare the function of PPAR in mouse and human hepatocytes via analysis of target gene regulation. Primary hepatocytes from 6 human and 6 mouse donors were treated with PPAR agonist Wy14643 and gene expression profiling was performed using Affymetrix GeneChips followed by a systems biology analysis. Baseline PPAR expression was similar in human and mouse hepatocytes. Depending on species and time of exposure, Wy14643 significantly induced the expression of 362-672 genes. Surprisingly minor overlap was observed between the Wy14643-regulated genes from mouse and human, although more substantial overlap was observed at the pathway level. Xenobiotics metabolism and apolipoprotein synthesis were specifically regulated by PPAR in human hepatocytes, whereas glycolysis-gluconeogenesis was regulated specifically in mouse hepatocytes. Most of the genes commonly regulated in mouse and human were involved in lipid metabolism and many represented known PPAR targets, including CPT1A, HMGCS2, FABP, ACSL, and ADFP. Several genes were identified that were specifically induced by PPAR in human (MBL2, ALAS1, CYP1A1, TSKU) or mouse (Fbp2, lgals4, Cd36, Ucp2, Pxmp4). Furthermore, several putative novel PPAR targets were identified that were commonly regulated in both species, including CREB3L3, KLF10, KLF11 and MAP3K8. Our results suggest that PPAR activation has a major impact on gene regulation in human hepatocytes. Importantly, the role of PPAR as master regulator of hepatic lipid metabolism is generally well-conserved between mouse and human. Overall, however, PPAR regulates a mostly divergent set of genes in mouse and human hepatocytes.

Publication Title

Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human.

Sample Metadata Fields

Sex, Age, Specimen part, Time

View Samples
accession-icon SRP165279
Early response to loss of Argonaute proteins in embryonic stem cells activates the Tgf-ß/Smad Transcriptional Network [mRNA-Seq: DicerDgcr8_KOs]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Argonaute (Ago) proteins, which act in post-transcriptional gene regulation directed by small RNAs, are vital for normal stem cell biology. Here we report the genomic characterization of stable Ago-deficient mouse embryonic stem cells (mESC) and determine the direct, primary and system level response to loss of Ago-mediated regulation. We find mESCs lacking all four Ago proteins are viable, do not repress microRNA (miRNA)-targeted cellular RNAs, and show distinctive gene network signatures. Profiling of RNA expression and epigenetic activity in an Ago mutant genetic series indicates that early responses to Ago loss are driven by transcriptional regulatory networks, in particular the Tgf-ß/Smad transcriptional network. This finding is confirmed using a time course analysis of Ago depletion and Ago rescue experiments. Detailed analysis places Tgf-ß/Smad activation upstream of cell cycle regulator activation, such as Cdkn1a, and repression of the c-Myc transcriptional network. The Tgf-ß/Smad pathway is directly controlled by multiple low-affinity miRNA interactions with Tgf-ß/Activin receptor mRNAs and receptor-mediated activation is required for Tgf-ß/Smad target induction with Ago loss. Our characterization reveals the interplay of post-transcriptional regulatory pathways with transcriptional networks in maintaining cell state and likely coordinating cell state transitions. Overall design: mRNA seq from stable genetic Dicer and Dgcr8 mutant mouse embryonic stem cells.

Publication Title

Temporal Control of the TGF-β Signaling Network by Mouse ESC MicroRNA Targets of Different Affinities.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE6518
Conjugated linoleic acid (CLA) and Caco-2 cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The effect of CLA on gene expression in Caco-2 cells

Publication Title

Conjugated linoleic acid alters global gene expression in human intestinal-like Caco-2 cells in an isomer-specific manner.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37897
Protein affects gene expression and prevents lipid accumulation in the liver in mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Obesity and associated increased prevalence of non-alcoholic fatty liver (NAFLD) disease is suggested to be positively modulated by a high protein (HP) diet in humans and rodents. The aim was to detect mechanisms by which a HP diet prevents hepatic lipid accumulation by means of transcriptomics. To study the acute and long term effect of a high protein ingestion on hepatic lipid accumulation under both low and high fat (HF) conditions, mice were fed combinations of high (35%) or low (10%) fat and high (50%) or normal (15%) protein diets for 1 or 12 weeks. Body composition, liver fat, VLDL production rate and gene expression were investigated. Differences in metabolic processes and functions in the liver were identified using gene set enrichment analysis on microarray data. Mice fed the HP diets developed less adiposity and decreased hepatic lipid accumulation due a combination of induced processes mainly involved in protein catabolism such as transamination, TCA cycle and oxidative phosphorylation. Feeding a HP diet can successfully prevent the development of NAFLD by using ingested energy for oxidation instead of storage.

Publication Title

Dietary protein affects gene expression and prevents lipid accumulation in the liver in mice.

Sample Metadata Fields

Sex, Age, Specimen part, Time

View Samples
accession-icon GSE138297
The host response of IBS patients to allogenic and autologous faecal microbiota transfer
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

In this randomised placebo-controlled trial, irritable bowel syndrome (IBS) patients were treated with faecal material from a healthy donor (n=8, allogenic FMT) or with their own faecal microbiota (n=8, autologous FMT). The faecal transplant was administered by whole colonoscopy into the caecum (30 g of stool in 150 ml sterile saline). Two weeks before the FMT (baseline) as well as two and eight weeks after the FMT, the participants underwent a sigmoidoscopy, and biopsies were collected at a standardised location (20-25 cm from the anal verge at the crossing with the arteria iliaca communis) from an uncleansed sigmoid. In patients treated with allogenic FMT, predominantly immune response-related genes sets were induced, with the strongest response two weeks after FMT. In patients treated with autologous FMT, predominantly metabolism-related gene sets were affected.

Publication Title

Allogenic Faecal Microbiota Transfer Induces Immune-Related Gene Sets in the Colon Mucosa of Patients with Irritable Bowel Syndrome.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE84000
Specific metabolic activation of adipose tissue macrophages during obesity promotes inflammatory responses
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Recent studies have identified intracellular metabolism as a fundamental determinant of macrophage function. In obesity, proinflammatory macrophages accumulate in adipose tissue and trigger chronic low-grade inflammation, that promotes the development of systemic insulin resistance, yet changes in their intracellular energy metabolism are currently unknown. We therefore set out to study metabolic signatures of adipose tissue macrophages (ATMs) in lean and obese conditions. F4/80-positive ATMs were isolated from obese vs lean mice. High-fat feeding of wild-type mice and myeloid-specific Hif1-/- mice was used to examine the role of hypoxia-inducible factor-1 (HIF-1) in ATMs part of obese adipose tissue. In vitro, bone marrow-derived macrophages were co-cultured with adipose tissue explants to examine adipose tissue-induced changes in macrophage phenotypes. Transcriptome analysis, real-time flux measurements, ELISA and several other approaches were used to determine the metabolic signatures and inflammatory status of macrophages. In addition, various metabolic routes were inhibited to determine their relevance for cytokine production. Transcriptome analysis and extracellular flux measurements of mouse ATMs revealed unique metabolic rewiring in obesity characterised by both increased glycolysis and oxidative phosphorylation. Similar metabolic activation of CD14+ cells in obese individuals was associated with diabetes outcome. These changes were not observed in peritoneal macrophages from obese vs lean mice and did not resemble metabolic rewiring in M1-primed macrophages. Instead, metabolic activation of macrophages was dose-dependently induced by a set of adipose tissue-derived factors that could not be reduced to leptin or lactate. Using metabolic inhibitors, we identified various metabolic routes, including fatty acid oxidation, glycolysis and glutaminolysis, that contributed to cytokine release by ATMs in lean adipose tissue. Glycolysis appeared to be the main contributor to the proinflammatory trait of macrophages in obese adipose tissue. HIF-1, a key regulator of glycolysis, nonetheless appeared to play no critical role in proinflammatory activation of ATMs during early stages of obesity. Our results reveal unique metabolic activation of ATMs in obesity that promotes inflammatory cytokine release. Further understanding of metabolic programming in ATMs will most likely lead to novel therapeutic targets to curtail inflammatory responses in obesity.

Publication Title

Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact