refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 141 results
Sort by

Filters

Technology

Platform

accession-icon SRP021058
The effects of dietary selenium on selenocysteine incorporation and selenoprotein expression
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The goal of this study was to determine the effects of dietary selenium levels on translational control of selenoprotein synthesis in mouse liver. Overall design: Wild type mice and mice expressing a mutant Sec-tRNA gene (TrspA37G) were fed diets supplemented with 0, 0.1, or 2 ppm selenium for 6 weeks. Livers were harvested and ribosome and mRNA profiles were generated by deep-sequencing using the Illumina HiSeq 2000.

Publication Title

Translational redefinition of UGA codons is regulated by selenium availability.

Sample Metadata Fields

Age, Cell line, Treatment, Subject

View Samples
accession-icon GSE40839
Expression data from fibroblasts cultured from normal and fibrotic human lung tissue
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pulmonary fibrosis develops as a consequence of environmentally induced lung injury and/or an inherent disease susceptibility causing fibroblast activation, proliferation and extracellular matrix deposition.

Publication Title

Microarray profiling reveals suppressed interferon stimulated gene program in fibroblasts from scleroderma-associated interstitial lung disease.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE32893
Human bronchial epithelial cells exposed to A. alternata spores
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This present study is the first to investigate the global changes in host gene expression during the interaction of human bronchial epithelial cells and live Alternaria spores. Human bronchial epithelial cells (BEAS2-B) were exposed to spores or media alone for 24 hours. RNA was collected from three biological replicates/treatment and used to assess changes in gene expression patterns using Affymetrix Human Genome U133 Plus 2.0 Arrays. Interestingly, many cytokine/chemokine immune response genes were upregulated. Genes involved in cell death, retinoic acid signaling, TLR3, and interferon response pathways were also significantly upregulated.

Publication Title

Analysis of global gene expression changes in human bronchial epithelial cells exposed to spores of the allergenic fungus, Alternaria alternata.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP062871
NOTCH1 mediates a reciprocal switch between two distinct secretomes during senescence [N1ICD]
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

ER:RAS-G12V expressing IMR90 cells were transduced with N1ICD-containing or control vectors before treatment with either 100nM 4-OHT or vehicle for 6 days leading to Notch-induced senescence (NIS), RAS-induced senescence (RIS) or combined Notch and Ras-induced senescence (RNIS). Overall design: IMR90 cells expressing a 4-hydroxytamoxifen (4-OHT) inducible estrogen receptor (ER)-coupled RAS-G12V (ER:RAS-G12V) were transduced with N1ICD-FLAG-containing (residues 1758-2556 of human NOTCH1, as per Capobianco et al, Mol Cell Biol, 1997) or control vector before treatment with either 100nM 4-OHT or vehicle for 6 days , leading to RAS-induced senescence (RIS), NOTCH-induced senescence (NIS) or combined Ras & NOTCH-induced senescence (RNIS). The total RNA was then analysed for transcriptional profiling using mRNA-sequencing. There were 6 (six) biological replicates for each experimental condition. Untreated, vector-transduced ER:RAS IMR90 cells were the control condition

Publication Title

NOTCH1 mediates a switch between two distinct secretomes during senescence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP062872
NOTCH1 mediates a reciprocal switch between two distinct secretomes during senescence [CSM]
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

ER:RAS-G12V expressing IMR90 cells were treated with either 100nM 4-OHT for 6 days or 100uM Etoposide for 2 days, followed by further culture for 5 days, leading to RAS-induced senescence (RIS) and DNA-damage induced senescence (DDIS) respectively. Overall design: IMR90 cells expressing a 4-hydroxytamoxifen (4-OHT) inducible estrogen receptor (ER)-coupled RAS-G12V (ER:RAS-G12V) were treated with either 100nM 4-OHT for 6 days or 100uM Etoposide for 2 days, followed by further culture for 5 days, leading to RAS-induced senescence (RIS) and DNA-damage induced senescence (DDIS) respectively. The total RNA was then analysed for transcriptional profiling using mRNA-sequencing. There were 8 (eight) biological replicatesfor each of the experimental conditions. Untreated ER:RAS IMR90 cells were the control condition

Publication Title

NOTCH1 mediates a switch between two distinct secretomes during senescence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP140795
Using RNA sequencing to examine age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy, and age independent disuse-induced insulin resistance
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Short-term bed rest is used to simulate muscle disuse in humans. In our previous reports, we found that 5d of bed rest induced a ~4% loss of skeletal muscle mass in OLD (60-79 y) but not YOUNG (18-28 y) subjects. Identifying muscle transcriptional events in response to bed rest and age-related differences will help identify therapeutic targets to offset muscle loss in vulnerable older adult populations. Skeletal muscle dysregulation during bed rest in the old may be driven by alterations in molecules related to fibrosis, inflammation, and cell adhesion. This information may aide in the development of mechanistic-based therapies to combat muscle atrophy during short-term disuse. Short-term muscle disuse is also characterized by skeletal muscle insulin resistance, though this response is divergent across subjects. The mechanisms regulating inactivity-induced insulin resistance between populations that are more or less susceptible to disuse-induced insulin resistance are not known, and delineated by age. High Susceptibility participants were uniquely characterized with muscle gene responses described by a decrease in pathways responsible for lipid uptake and oxidation, decreased capacity for triglyceride export (APOB), increased lipogenesis (i.e., PFKFB3, FASN), and increased amino acid export (SLC43A1). Overall design: RNA was isolated and sequenced from muscle biopsies obtained from the vastus lateralis of YOUNG (N=9) and OLD (N=18) men and women before and after five days of bed rest. Sequencing libraries (18 pM) were chemically denatured and applied to an Illumina TruSeq v3 single read flowcell using an Illumina cBot. Hybridized molecules were clonally amplified and annealed to sequencing primers with reagents from an Illumina TruSeq SR Cluster Kit v3-cBot-HS (GD-401-3001). Following transfer of the flowcell to an Illumina HiSeq 2500 instrument (HCS v2.0.12 and RTA v1.17.21.3), a 50 cycle single read sequence run was performed using TruSeq SBS v3 sequencing reagents (FC-401-3002). The design formula was constructed by following the section on group-specific condition effects, individuals nested within groups in the DESeq2 vignette.   The design included age + age:nested + age:time to test for differences in bed rest in old subjects, young subjects and the interaction, in this case if bed rest effects are different between the two age groups (where age is young or old, nested is patient number nested by age and time is pre- or post-bed rest). A similar design was used to determine susceptibility to disuse-induced insulin resistance, where “susceptibility” took the place of “age”.

Publication Title

Disuse-induced insulin resistance susceptibility coincides with a dysregulated skeletal muscle metabolic transcriptome.

Sample Metadata Fields

Sex, Specimen part, Subject, Time

View Samples
accession-icon SRP030129
Male-specific Fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains
  • organism-icon Drosophila melanogaster
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Drosophila melanogaster adult males perform an elaborate courtship ritual to entice females to mate. fruitless (fru), a gene that is one of the key regulators of male courtship behavior, encodes multiple male-specific isoforms (FruM). These isoforms vary in their carboxy-terminal zinc finger domains, which are predicted to facilitate DNA binding. By over-expressing individual FruM isoforms in fru-expressing neurons in either males or females and assaying the global transcriptional response by RNA-sequencing, we show that three FruM isoforms have different regulatory activities that depend on the sex of the fly. We identified several sets of genes regulated downstream of FruM isoforms. Overall design: RNA seqeuncing was performed on mRNA derived from adult male or female heads, for a total of 39 samples. These samples included two wild type genotypes (Berlin and Canton-S), two transheterozygous mutants for fru P1 (Df(3R)P14/Df(3R)fru4-40 and fruw12/ Df(3R)ChaM5), and 3 overexpressing genotypes (fru P1-Gal4: UAS-FruMA, UAS-FruMB, UAS-FruMC). There were at least 3 replicates from biological samples for all sex by genotype combinations.

Publication Title

Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE40466
Expression profiling of TGF-beta-induced and hnRNP E1-mediated epithelial-mesenchymal transition
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Regulation of gene expression at the post-transcriptional level plays an indispensable role during TGFbeta-induced EMT and metastasis. This regulation involves a transcript-selective translational regulatory pathway in which a ribonucleoprotein (mRNP) complex, consisting of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) and eukaryotic elongation factor 1A1 (eEF1A1), binds to a 3-UTR regulatory BAT (TGF activated translation) element and silences translation of Dab2 and ILEI mRNAs, two transcripts which are involved in mediating EMT. TGFbeta activates a kinase cascade terminating in the phosphorylation of hnRNP E1, by isoform-specific stimulation of protein kinase B/Akt2, inducing the release of the mRNP complex from the 3-UTR element, resulting in the reversal of translational silencing and increased expression of Dab2 and ILEI transcripts.

Publication Title

Establishment of a TGFβ-induced post-transcriptional EMT gene signature.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70160
Dietary selenium levels affect selenoprotein expression and support the interferon- and IL-6 immune response pathways in mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE71716
Dietary selenium levels affect selenoprotein expression and support the interferon- and IL-6 immune response pathways in mice [microarray]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mice were fed Se-deficient or Se-adequate diets for 6 weeks. Liver and lung tissue were harvested and processed for RNA-Seq, ribosome profiling, and microarray analysis. From these studies, we identified changes in mRNA levels and translation of selenoprotein genes and genes regulated by interferon-gamma. Cytokine profiles of serum indicated that interferon-gamma and IL-6 levels were increased in the Se-adequate mice relative to Se-deficient mice.

Publication Title

Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact