Macrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signalling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomics and proteomics approaches. We identified a common pattern of genes transcriptionally regulated that overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member, CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine, TNF. Cd180-silenced cells produced increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases the CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response. Overall design: Genome-wide changes in gene Expression in mouse bone marrow-derived macrophages stimulated with Borrelia burgdorferi or left unstimulated were generated by RNAseq.
Regulation of macrophage activity by surface receptors contained within Borrelia burgdorferi-enriched phagosomal fractions.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesSchizophrenia (SZ) and autism spectrum disorders (ASD) are highly heritable neuropsychiatric/neurodevelopmental disorders, although environmental factors, such as maternal immune activation (MIA), play a role as well. Inflammatory cytokines appear to mediate the effects of MIA on neurogenesis and behavior in animal models. However, drugs and cytokines that trigger MIA can also induce a febrile reaction, which could have independent effects on neurogenesis through heat shock (HS)-regulated cellular stress pathways. However, this has not been well-studied. As a first step towards addressing the role of fever in MIA, we used a recently described model of human brain development in which induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional neuronal aggregates that resemble a first trimester telencephalon. RNA-seq was carried out on aggregates that were heat shocked at 39oC for 24 hours, along with their control partners maintained at 37oC. Overall, 186 genes showed significant differences in expression following HS (p<0.05), including known HS-inducible genes, as expected, as well as those coding for NGFR and a number of SZ and ASD candidates, including SMARCA2, DPP10, ARNT2, AHI1 and ZNF804A. The degree to which the expression of these genes decrease or increase during HS is similar to that found in copy loss and copy gain CNVs, although the effects of HS are likely to be more transient. Overall design: RNA-seq was carried out on neuronal aggregates as described by Mariani et al. with slight modification (PMID:22761314). For the heat shock experiment, a group of 49 day old aggregates was placed in an incubator set at 39C for 24 hours, while control sets of aggregates were maintained at 37C. The incubator conditions were otherwise unchanged. After detaching the aggregates, total cellular RNA was isolated using the miRNeasy Kit (Qiagen) according to the manufacturer's protocol. Lastly, RNAseq profiles of HS and Control were compared
Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon.
No sample metadata fields
View SamplesObjective: Physical exercise and vitamin E are considered effective treatments of nonalcoholic fatty liver and other metabolic diseases. However, vitamin E has also been shown to interfere with the adaptation to exercise training, in particular for the skeletal muscle. Here, we studied the hypothesis that vitamin E also interferes with the metabolic adaptation of the liver to acute exercise.
A Vitamin E-Enriched Antioxidant Diet Interferes with the Acute Adaptation of the Liver to Physical Exercise in Mice.
Sex, Specimen part
View SamplesThe goal of this project is to study transcriptome change by knocking down ZNF804A, a schizophrenia and bipolar disorder candidate gene, in early neurons derived from iPSCs. Overall design: Neural progenitor cells (NPCs) were developed from human induced pluripotent stem cells (iPSCs) and transduced by two independent shRNA vectors targeting ZNF804A, a schizophrenia and bipolar disorder candidate gene. After recovery and selection in puromycin, neuronal differentiation was induced. After 14 days, RNA was recovered and analyzed by RNA-seq. The expression profiles were compared with NPCs that were transduced with scrambled control vectors. This corresponds to controls 1-3 and KD 1-3, which was carried out on a male iPSC line. Scramble 1 and 2 and KD1 and 2 are technical replicates. Scrambled 3 and KD 3 were carried out on an independent NPC culture. For control 4 and KD4, neuronal differentiation was induced, and on day 10 the cells were transduced with the same ZNF804A KD and scrambled control vectors used for scrambled control 3 and KD3. In addition, this last set was carried out on a female iPSC line
ZNF804A Transcriptional Networks in Differentiating Neurons Derived from Induced Pluripotent Stem Cells of Human Origin.
No sample metadata fields
View SamplesTwo human acute lymphoblastic leukemia cell lines (Molt-4 and CCRF-CEM) were treated with direct (A-769662) and indirect (AICAR) AMPK activators. Molt-4 and CCRF-CEM cells were obtained from ATCC (CRL-1582 and CCL-119). Control samples were used for the analysis of metabolic differences between cell lines. Therefore the data was analyzed in combination with, metabolomic data, and the genome-scale reconstruction of human metabolism. For experiments cells were grown in serum-free medium containing DMSO (0.67%) at a cell concentration of 5 x 105 cells/mL.
Prediction of intracellular metabolic states from extracellular metabolomic data.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A history of obesity leaves an inflammatory fingerprint in liver and adipose tissue.
Sex, Age, Specimen part
View SamplesDieting is a popular yet often ineffective way to lower body weight, as the majority of people regain most of their pre-dieting weights in a relatively short time. The underlying molecular mechanisms driving weight regain and the increased risk for metabolic disease are still incompletely understood. Here we investigate the molecular alterations inherited from a history of obesity. In our model, male HFD fed obese C57BL/6J mice, were switched to a low caloric chow diet, resulting in a decline of body weight to that of lean mice. Within seven weeks after diet switch, most obesity associated phenotypes, such as body mass, glucose intolerance and blood metabolite levels were reversed. However, hepatic inflammation, hepatic steatosis as well as hypertrophy and inflammation of perigonadal, but not subcutaneous, adipocytes persisted in formerly obese mice. Transcriptional profiling of liver and perigonadal fat revealed an upregulation of pathways associated with immune function and cellularity. Thus, we show that weight reduction leaves signs of inflammation in liver and perigonadal fat, indicating that persisting proinflammatory signals in liver and adipose tissue could contribute to an increased risk of formerly obese subjects to develop the metabolic syndrome upon recurring weight gain.
A history of obesity leaves an inflammatory fingerprint in liver and adipose tissue.
Sex, Age, Specimen part
View SamplesThis study demonstrates that arthritis and heart valve stenosis comorbidity, the most common condition among RA and SpA patients, share common mesenchymal requirements converging in the pathogenic activation of resident mesenchymal origin fibroblasts in the Tnf?ARE mouse model. TNFR2 signaling, in this context, orchestrates the molecular mechanisms underlying arthritis and heart valve stenosis manifestation by regulating fibroblasts pathogenic activation status, cell proliferation and pro-inflammatory milieu. Finally this work highlights the complexity of TNFR2 functions since mesenchymal signaling is detrimental, whereas systemic TNFR2 provides protective signals that contain both pathologies Overall design: 3' RNA-Seq (QuantSeq) profiling of 2 cell types (SFs,VICs) in two different genotypes (TNF-DeltaARE, ColVIp75f/f-TNF-DeltaARE) and Wild type as control. 3 replicates per group.
Mesenchymal TNFR2 promotes the development of polyarthritis and comorbid heart valve stenosis.
Specimen part, Cell line, Subject
View SamplesWe performed gene expression microarray analysis of skeletal muscle biopsies from normal glucose tolerant subjects and type 2 diabetes subjects obtained during a 60 min bicycle ergometer exercise and the 180 min of recovery phase
Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery.
Age
View SamplesIn this survey we effectively combined transcriptomics, proteomics and targeted-metabolomics to analyse the temporal relationship of alterations in liver preceding and accompanying the development of HFD-mediated hepatic insulin resistance. To assess HFD-mediated alterations in physiological parameters, insulin sensitivity, and molecular adaptations in liver male C3HeB/FeJ mice treated with a high-fat diet (HFD) for 7, 14, or 21 days and compared to age- matched controls fed low-fat diet (LFD).
High fat diet-induced modifications in membrane lipid and mitochondrial-membrane protein signatures precede the development of hepatic insulin resistance in mice.
Sex, Age, Treatment, Time
View Samples