Expression profiles at various time points after surgical intervention for pressure-overload induced cardiac hypertrophy and failure.
Small proline-rich protein 1A is a gp130 pathway- and stress-inducible cardioprotective protein.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesThe overall goal of this project is to investigate the role of TGF-beta signaling in tongue development in order to study the contribution of cranial neural crest (CNC) cells towards the patterning of cranial mesoderm for proper tongue formation. Here, we conducted gene expression profiling of embryonic tongue tissue from wild type mice as well as those with a neural crest specific conditional inactivation of the Tgfbr2 gene. The latter mice provide a model of microglossia, a common congenital birth defect which is frequently observed with several syndromic conditions.
Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.
Sex, Specimen part
View SamplesThe overall goal of this project is to investigate the role of TGF-beta signaling in regulating the cellular metabolism of cranial neural crest (CNC) cells during palate development. Here, we conducted gene expression profiling of primary mouse embryonic palatal mesenchymal (MEPM) cells from wild type mice as well as those with a neural crest specific conditional inactivation of the Tgfbr2 gene. The latter mice provide a model of cleft palate, which is among the most common congenital birth defects and observed in many syndromic conditions.
Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice.
Specimen part
View SamplesThe hematopoietic microenvironment consists of non-hematopoietic derived stromal elements and hematopoietic derived monocytes and macrophages which interact and function together to control the proliferation and differentiation of early blood-forming cells. Two human stromal cell lines (HS-5 and HS-27a) representing distinct functional components of this microenvironment have been extensively characterized and shown to influence monocyte gene expression. This series of gene expression profiles is intended to extend the previous studies and identify which gene expression changes may require cell-cell contact or occur in the stromal cells as a result of monocyte influence;or in the monocytes as a result of stormal influences.
Functionally and phenotypically distinct subpopulations of marrow stromal cells are fibroblast in origin and induce different fates in peripheral blood monocytes.
Sex
View SamplesThe bone marrow microenvironment is a complex mixture of cells that function in concert to regulate hematopoiesis. Cellular components include fixed nonhematopoietic stromal elements as well as monocytes and resident macrophages, which are derived from the hematopoietic stem cells. Although these monocyte-lineage cells are reported to modify stromal cell function, the reverse also occurs. Given the secretory capability of the monocyte/macrophage and their various potential functions, it is not surprising that stromal cells contained within a particular niche can modify monocyte gene expression and functional maturation.
Functionally and phenotypically distinct subpopulations of marrow stromal cells are fibroblast in origin and induce different fates in peripheral blood monocytes.
Sex
View SamplesArabidopsis thaliana wild-type and ire1a/ire1b double mutant plants were treated with tunicamycin. RNA was extracted and subjected to microarray analysis.
Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor.
No sample metadata fields
View SamplesThe overall goal of this project is to investigate the role of TGF-beta signaling in epithelial cells as it pertains to the orientation of muscle fibers in the soft palate during embryogenesis. Here, we first conducted gene expression profiling of the anterior and posterior portions of the palate from wild-type mice. In addition, we also conducted gene expression profiling of the posterior palate in mutant mice with an epithelium-specific conditional inactivation of the Tgfbr2 gene. The latter mice provide a model of submucosal cleft palate, which is a congenital birth defect commonly observed in many syndromic conditions.
TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate.
Sex, Specimen part
View SamplesVariable strengths of T cell receptor (TCR) signaling can produce divergent outcomes for T cell development and function. The mechanisms leading to different outcomes are incompletely understood, but may include distinct activation thresholds for different transcription factors as well as distinct sensitivities among target genes to transcription factors. IRF4 is one transcription factor implicated in responses to variable TCR signal strength. IRF4 expression increases uniformly with increasing TCR signal strength (i.e., analog), but it is unclear how IRF4 induced distinct genes at different levels, rather than different amounts of the same genes. Here, we analyzed global gene expression in TH2 cells and used ChIP-seq to define the relationship between TCR signal strength, enhancer occupancy and transcriptional activity for BATF/IRF4-dependent genes. We show that enhancers exhibit a spectrum of affinity for the BATF/IRF4 ternary complex mediate graded responsiveness of individual genes to increasing TCR signal strength. Differential gene induction by BATF and IRF4 occurs through interaction with enhancer elements of different affinity for BATF/IRF4 complexes. The increased resolution of factor binding site identified using ChIP-exo allowed the identification of a novel AICE2 motif binding BATF/IRF4 with higher affinity and that this may explain the protective role of a single nucleotide polymorphism in the CTLA-4 locus known to decrease the incidence of autoimmune diseases.
Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF-IRF4 transcription factor complex.
Specimen part
View SamplesWe reported this study established a mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. Overall design: kidney mRNA profiles of Olive oil, CCl4, EtOH, and CCl4+EtOH treatment in C57BL/6 mice were generated by deep sequencing.
A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways.
Sex, Specimen part, Cell line, Subject
View SamplesGene expression was examined in granulosa cells and oocytes in various stage of follicle and in vitro grown oocytes and granulosa cells complexes in sus scrofa.
Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes.
Specimen part
View Samples