Epiblast stem cells (EpiSCs) were derived from the epiblast or the ectoderm (epi/ect) of pre-gastrula stage to late-bud stage mouse embryos. To identify if the EpiSCs retain any original stage specific characteristics or which developmental stage of epi/ect they most closely related to, we performed microarray analysis to compare the gene expression profile of multiple EpiSC lines with that of epi/ect of 7 different stages.
The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak.
Specimen part
View SamplesIncreasing alpha 7 beta 1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression.
No sample metadata fields
View SamplesAnalysis of integrin alpha7 transgenic mice skeletal muscle transcription profiles comparing to wild type controls. Integrin alpha7 is the major laminin binding integrin in muscle cells. Enhancing its expression has been demonstrated to alleviate pathology in a murine model of Duchenne muscular dystrophy. Results of this study provide insights into the effects of increasing integrin alpha7 expression on skeletal muscle transcription and physiology in vivo. This analysis also evaluates any potential possible side effects associate with enhancing integrin alpha7 in skeletal muscle.
Increasing alpha 7 beta 1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Temporal clustering of gene expression links the metabolic transcription factor HNF4α to the ER stress-dependent gene regulatory network.
Specimen part
View SamplesProtein misfolding stress in the endoplasmic reticulum (ER) leads to dysregulation of lipid metabolism in the liver, and ER stress is associated with human diseases that are accompanied by hepatic lipid accumulation, including obesity, alcoholism, and viral hepatitis; yet the pathways leading from ER stress to the regulation of lipid metabolism are poorly understood. Working exclusively in vivo, we used a bottom-up approach to infer pathways in the genetic regulation of lipid metabolism by the UPR.
Temporal clustering of gene expression links the metabolic transcription factor HNF4α to the ER stress-dependent gene regulatory network.
Specimen part
View SamplesProtein misfolding stress in the endoplasmic reticulum (ER) leads to dysregulation of lipid metabolism in the liver, and ER stress is associated with human diseases that are accompanied by hepatic lipid accumulation, including obesity, alcoholism, and viral hepatitis; yet the pathways leading from ER stress to the regulation of lipid metabolism are poorly understood. Working exclusively in vivo, we used a bottom-up approach to infer pathways in the genetic regulation of lipid metabolism by the UPR.
Temporal clustering of gene expression links the metabolic transcription factor HNF4α to the ER stress-dependent gene regulatory network.
Specimen part
View SamplesExperimental autoimmune uveitis (EAU) in Lewis rats is a model for the clinical heterogeneity of human uveitis. The autoantigens inducing disease in the rat are also seen in human disease. Depending upon the specific autoantigen used, the experimental disease course can be either monophasic or relapsing/remitting and appears to be dictated by the T cell effector phenotype elicited. We investigated potential differences between monophasic and relapsing/remitting effector T cells using transcriptomic profiling and pathway analysis. RNA samples isolated from three independent T cell lines derived from each specificity where analyzed by microarrays.
Effector T cells driving monophasic vs. relapsing/remitting experimental autoimmune uveitis show unique pathway signatures.
Specimen part
View SamplesNKL homeobox genes encode developmental transcription factors regulating basic processes in cell differentiation. According to their physiological expression pattern in early hematopoiesis and B-cell development, particular members of this homeobox gene subclass constitute an NKL-code. These B-cell specific genes generate a regulatory network and their deregulation is implicated in B-cell lymphomagenesis. Epstein-Barr virus (EBV) infects B-cells and influences the activity of signalling pathways including JAK/STAT and several genes encoding developmental regulators. Therefore, EBV-infection impacts the pathogenesis and the outcome of B-cell malignancies including Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL). Here, we isolated EBV-positive and EBV-negative subclones from the DLBCL derived cell line DOHH-2. These subclones served as model to investigate the role of EBV in deregulation of the B-cell specific NKL-code members HHEX, HLX, MSX1 and NKX6-3. We showed that the EBV-encoded factors LMP1 and LMP2A activated the expression of HLX via STAT3. HLX in turn repressed NKX6-3, SPIB and IL4R which normally mediate plasma cell differentiation. In addition, HLX repressed pro-apoptotic factor BCL2L11/BIM supporting cell survival. Thus, EBV aberrantly activated HLX thereby disturbing both B-cell differentiation and apoptosis in DLBCL. The results of our study contribute to better understand the pathogenic role of EBV in B-cell malignancies.
The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in anaplastic large cell lymphoma (ALCL).
Cell line, Treatment
View SamplesNKL homeobox genes encode developmental transcription factors regulating basic processes in cell differentiation. According to their physiological expression pattern in early hematopoiesis and B-cell development, particular members of this homeobox gene subclass constitute an NKL-code. These B-cell specific genes generate a regulatory network and their deregulation is implicated in B-cell lymphomagenesis. Epstein-Barr virus (EBV) infects B-cells and influences the activity of signalling pathways including JAK/STAT and several genes encoding developmental regulators. Therefore, EBV-infection impacts the pathogenesis and the outcome of B-cell malignancies including Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL). Here, we isolated EBV-positive and EBV-negative subclones from the DLBCL derived cell line DOHH-2. These subclones served as model to investigate the role of EBV in deregulation of the B-cell specific NKL-code members HHEX, HLX, MSX1 and NKX6-3. We showed that the EBV-encoded factors LMP1 and LMP2A activated the expression of HLX via STAT3. HLX in turn repressed NKX6-3, SPIB and IL4R which normally mediate plasma cell differentiation. In addition, HLX repressed pro-apoptotic factor BCL2L11/BIM supporting cell survival. Thus, EBV aberrantly activated HLX thereby disturbing both B-cell differentiation and apoptosis in DLBCL. The results of our study contribute to better understand the pathogenic role of EBV in B-cell malignancies.
The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in anaplastic large cell lymphoma (ALCL).
Cell line, Treatment
View SamplesWe have investigated the initial responses in human lung tissue explants to Mtb infection, focusing primarily on gene expression patterns in different tissue resident innate cell types Overall design: Cells sorted from uninfected and infected lung tissue (24 hrs. post infection)
<i>Mycobacterium tuberculosis</i> Invasion of the Human Lung: First Contact.
Specimen part, Subject
View Samples