Here we present the transcriptomic profile of mutant plants designated as ceh1 (constitutively expressing HPL). CEH1 encodes 1-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase (HDS), the enzyme controlling the bottleneck step of the biosynthesis of isopentenyl diphosphate via the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the plastids. Mutation of this enzyme in ceh1 mutant led to accumulation of high levels of the stress specific signaling metabolite 2c-methyl-D-erythritol 2,4-cylclodiphosphate (MEcPP), and consequently constitutive activation of a selected otherwise stress responsive genes. This data identifies the ensemble of stress responsive genes whose expression is regulated by the MEcPP signaling cascade.
Plastid-produced interorgannellar stress signal MEcPP potentiates induction of the unfolded protein response in endoplasmic reticulum.
No sample metadata fields
View SamplesWinter survival and maintenance strategy is crucial in temperate woody plants. Here, we demonstrate novel aspects of the transcriptional regulations adopted by perennial tree species in winter/dormancy, employing a biochemical and whole transcriptome analysis. As expected, genes related to cold hardiness and defense are over-represented. Interestingly, carbohydrate biosynthesis and transport-related genes were very actively expressed in winter/dormancy. Further biochemical analyses verified the dormancy/winter transcription phenotype. Furthermore, dormancy/winter preferential expression of genes involved in the cell wall biosynthesis/modification, circadian rhythm, the indirect transcriptional regulation (RNA metabolism), and chromatin modification/remodeling were identified. Taken together, regulation of gene expression in the winter survival and maintenance may include not only controlled by promoter binding transcription factors but may also be regulated at the post-transcriptional and chromatin levels.
Novel aspects of transcriptional regulation in the winter survival and maintenance mechanism of poplar.
Specimen part
View SamplesThe Affymetrix Human Genome U133 Plus 2.0 Array was used to examine the Genome wide transcriptional changes which follow the treatment of AML xenografts with either PBS control or combination of decitabine (DAC) and cytarabine (Ara-C). Animals were treated with PBS, DAC alone, Ara-C alone, DAC and Ara-C combined (D+A), DAC followed by Ara-C (D/A) or Ara-C followed by DAC (A/D).
Sequential treatment with cytarabine and decitabine has an increased anti-leukemia effect compared to cytarabine alone in xenograft models of childhood acute myeloid leukemia.
Specimen part, Disease
View SamplesEts1-/- mice have an increase in B cell differentiation to plasma cells and increased serum immunoglobulin levels. The genes in B cells that are transcriptionally regulated by Ets1 and help regulate B cell differentiation are largely unknown. Here, we identify Ets1-regulated target genes in B cells using ChIP-seq and RNA-seq analysis. We found that Ets1 targets genes associated with immune response, mature B cell differentiation and regulation of B cell activation. Overall design: Quiescent follicular B cells were sorted from the spleens of wild-type and Ets1-/- mice using the following markers B220+ CD23-high CD21-low CD80-negative IgA-negative IgE-negative IgG1-negative IgG2a-negative IgG2b-negative IgG3-negative. Total RNA was prepared from sorted cells and subjected to RNA-sequencing.
Genome-Wide Identification of Target Genes for the Key B Cell Transcription Factor <i>Ets1</i>.
Specimen part, Cell line, Subject
View SamplesWe used microarrays to examine gene expression levels from 95 unrelated CEPH-Utah individuals 0, 2 or 6 hours after treatment with 10Gy of ionizing radiation.
Stress-induced changes in gene interactions in human cells.
Cell line, Treatment, Time
View SamplesWe used microarrays to examine gene expression levels from 131 unrelated CEPH-Utah grandparents with either DMSO or tunicamycin.
Stress-induced changes in gene interactions in human cells.
Cell line, Treatment, Time
View SamplesArterial occlusive diseases are major causes of morbidity and mortality. Blood flow to the affected tissue must be restored quickly if viability and function are to be preserved. Collaterals are artery-to-artery or arteriole-to-arteriole interconnections that can bypass an occlusion by providing an alternative route for blood flow to the affected tissue. The increased flow and sheer stress initiate processes that result in the remodeling (arteriogenesis) of these vessels into efficient conductance arteries. Here we report that the mixed-lineage kinase (MLK) pathway activates cJun NH2-terminal kinase (JNK) in endothelial cells. Disruption of Mlk2/3 or Jnk1/2 genes caused severe blockade of blood flow and failure to recover in the femoral artery ligation model of hindlimb ischemia because of abnormal collateral arteries. We show that the MLK-JNK pathway is essential for patterning and maturation of collateral arteries during development, but this pathway is not required for angiogenesis or arteriogenesis in adults. JNK in endothelial cells promotes Delta-like 4-induced Notch signaling and suppresses excessive sprouting angiogenesis during development. This function of the MLK-JNK pathway contributes to normal formation of native collateral arteries. The MLK-JNK pathway is therefore a key regulatory mechanism for vascular development. These data highlight the crucial importance of the collateral circulation in the response to arterial occlusive diseases. Overall design: RNA-seq analysis of mouse lung endothelial cells (MLEC) of the following genotypes Cdh5-Cre+ Jnk1+/+ Jnk2+/+ Jnk3-/-(ECtrl), Cdh5-Cre- Jnk1LoxP/LoxP Jnk2LoxP/LoxP Jnk3-/- (EfCtrl), and Cdh5-Cre+ Jnk1LoxP/LoxP Jnk2LoxP/LoxP Jnk3-/- (E3KO). Three separate samples from mouse lung endothelial cells of each genotype were analyzed.
Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development.
No sample metadata fields
View SamplesXenotransplantation holds the promise of providing an unlimited supply of donor organs for terminal patients with organ failure. The gal carbohydrate results in rejection of wild type pig grafts, however, chimerism established by expression of the GalT gene prior to transplantation in GalT knockout mice results in tolerance to Gal+ heart grafts.
Intragraft gene expression profile associated with the induction of tolerance.
No sample metadata fields
View SamplesWe measured mRNA abundance in the embryogenic tissue of 150 recombinant Steptoe x Morex doubled-haploid lines (no replicates) and in parental genotypes, Steptoe and Morex, 3 replicates each, total 156 chips.
SFP genotyping from affymetrix arrays is robust but largely detects cis-acting expression regulators.
Age, Specimen part, Time
View SamplesComparison of mRNA accumulation in segregating doubled haploid barley lines ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, . The equivalent experiment is BB21 at PLEXdb.]
SFP genotyping from affymetrix arrays is robust but largely detects cis-acting expression regulators.
Specimen part
View Samples