shRNAs were assessed for off-target effects by comparing the gene expression profiles of cells that they had been infected into. shRNAs designed with the shERWOOD algorithm and house in the ultramir microRNA scafold were found to have very little off targeting. Overall design: Purpose: A major detriment to RNAi is off-targeting. We wished to assess the level of off targeting of microRNA (ultramiR) housed shERWOOD shRNAs as compared to similar shRNAs in the TRC collection. Methods: 5 shRNAs targeting each of two genes were infected into the 4T1 cell line. For each gene one shRNA was selected from the TRC collection and one based on the shERWOOD algorithm. For each gene, the exrpession profiles of the corresponding shRNA infected cells were compared using RNAseq. Conclusions: Highly similar profiles were observed between shERWOOD selected shRNAs. TRC shRNAs produced profiles indicative of off-targeting.
A computational algorithm to predict shRNA potency.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models.
Specimen part, Disease, Disease stage, Cell line, Subject
View SamplesColorectal cancer (CRC) is a highly heterogeneous disease both from a molecular and clinical perspective. Several distinct molecular entities, such as microsatellite instability (MSI), have been defined that make up biologically distinct subgroups with their own clinical course. Recent data indicated that CRC can be best segregated into four groups called Consensus Molecular Subtypes (CMS1-4), which each have a unique biology and gene expression pattern. In order to develop improved, subtype-specific therapies and to gain insight into the molecular wiring and origin of these subtypes, reliable models are needed. This study was designed to determine the heterogeneity and identify the presence of CMSs in a large panel of CRC cell lines, primary cultures and patient-derived xenografts (PDX). We provide a repository encompassing this heterogeneity and moreover describe that a large part of the models can be robustly assigned to one of the four CMSs, independent of the stromal contribution. We subsequently validate our CMS stratification by functional analysis which for instance shows mesenchymal enrichment in CMS4 and metabolic dysregulation in CMS3. Finally, we observe a clear difference in sensitivity to chemotherapy-induced apoptosis, specifically between CMS2 and CMS4. This relates to the in vivo efficacy of chemotherapy, which delays outgrowth of CMS2, but not CMS4 xenografts. This indicates that molecular subtypes are faithfully modelled in the CRC cell cultures and PDXs, representing tumour cell intrinsic and stable features. This repository provides researchers with a platform to study CRC using the existing heterogeneity.
Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models.
Specimen part, Disease, Disease stage, Subject
View SamplesColorectal cancer (CRC) is a highly heterogeneous disease both from a molecular and clinical perspective. Several distinct molecular entities, such as microsatellite instability (MSI), have been defined that make up biologically distinct subgroups with their own clinical course. Recent data indicated that CRC can be best segregated into four groups called Consensus Molecular Subtypes (CMS1-4), which each have a unique biology and gene expression pattern. In order to develop improved, subtype-specific therapies and to gain insight into the molecular wiring and origin of these subtypes, reliable models are needed. This study was designed to determine the heterogeneity and identify the presence of CMSs in a large panel of CRC cell lines, primary cultures and patient-derived xenografts (PDX). We provide a repository encompassing this heterogeneity and moreover describe that a large part of the models can be robustly assigned to one of the four CMSs, independent of the stromal contribution. We subsequently validate our CMS stratification by functional analysis which for instance shows mesenchymal enrichment in CMS4 and metabolic dysregulation in CMS3. Finally, we observe a clear difference in sensitivity to chemotherapy-induced apoptosis, specifically between CMS2 and CMS4. This relates to the in vivo efficacy of chemotherapy, which delays outgrowth of CMS2, but not CMS4 xenografts. This indicates that molecular subtypes are faithfully modelled in the CRC cell cultures and PDXs, representing tumour cell intrinsic and stable features. This repository provides researchers with a platform to study CRC using the existing heterogeneity.
Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models.
Specimen part, Disease, Disease stage, Subject
View SamplesColorectal cancer (CRC) is a highly heterogeneous disease both from a molecular and clinical perspective. Several distinct molecular entities, such as microsatellite instability (MSI), have been defined that make up biologically distinct subgroups with their own clinical course. Recent data indicated that CRC can be best segregated into four groups called Consensus Molecular Subtypes (CMS1-4), which each have a unique biology and gene expression pattern. In order to develop improved, subtype-specific therapies and to gain insight into the molecular wiring and origin of these subtypes, reliable models are needed. This study was designed to determine the heterogeneity and identify the presence of CMSs in a large panel of CRC cell lines, primary cultures and patient-derived xenografts (PDX). We provide a repository encompassing this heterogeneity and moreover describe that a large part of the models can be robustly assigned to one of the four CMSs, independent of the stromal contribution. We subsequently validate our CMS stratification by functional analysis which for instance shows mesenchymal enrichment in CMS4 and metabolic dysregulation in CMS3. Finally, we observe a clear difference in sensitivity to chemotherapy-induced apoptosis, specifically between CMS2 and CMS4. This relates to the in vivo efficacy of chemotherapy, which delays outgrowth of CMS2, but not CMS4 xenografts. This indicates that molecular subtypes are faithfully modelled in the CRC cell cultures and PDXs, representing tumour cell intrinsic and stable features. This repository provides researchers with a platform to study CRC using the existing heterogeneity.
Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models.
Disease, Disease stage, Cell line
View SamplesColorectal cancer (CRC) is a highly heterogeneous disease both from a molecular and clinical perspective. Several distinct molecular entities, such as microsatellite instability (MSI), have been defined that make up biologically distinct subgroups with their own clinical course. Recent data indicated that CRC can be best segregated into four groups called Consensus Molecular Subtypes (CMS1-4), which each have a unique biology and gene expression pattern. In order to develop improved, subtype-specific therapies and to gain insight into the molecular wiring and origin of these subtypes, reliable models are needed. This study was designed to determine the heterogeneity and identify the presence of CMSs in a large panel of CRC cell lines, primary cultures and patient-derived xenografts (PDX). We provide a repository encompassing this heterogeneity and moreover describe that a large part of the models can be robustly assigned to one of the four CMSs, independent of the stromal contribution. We subsequently validate our CMS stratification by functional analysis which for instance shows mesenchymal enrichment in CMS4 and metabolic dysregulation in CMS3. Finally, we observe a clear difference in sensitivity to chemotherapy-induced apoptosis, specifically between CMS2 and CMS4. This relates to the in vivo efficacy of chemotherapy, which delays outgrowth of CMS2, but not CMS4 xenografts. This indicates that molecular subtypes are faithfully modelled in the CRC cell cultures and PDXs, representing tumour cell intrinsic and stable features. This repository provides researchers with a platform to study CRC using the existing heterogeneity.
Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models.
Specimen part, Disease, Disease stage, Cell line
View SamplesWe characterzised global changes in gene expresseion between 8 cell embryos and blastocysts to identify potential genes required for blastocyst formation.
Transcription factor AP-2γ is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis.
Specimen part
View SamplesIn germ cells, Piwi proteins interact with a specific class of small non-coding RNAs, piwi-interacting RNAs (piRNAs). Together, these form a pathway that represses transposable elements, thus safeguarding germ cell genomes. While basic models describe the operation of piRNA pathways, neither the protein compositions of Piwi complexes, the critical protein-protein interactions that drive small RNA production and target recognition, or the precise molecular consequences of conserved localization to germline structures, call nuage, is well understood. We purified the three murine Piwi family proteins, Mili, Miwi, and Miwi2, from mouse germ cells and characterized their interacting protein partners. Piwi proteins were found in complex with Prmt5/Wdr77, an enzyme that di-methylates arginine residues. By immunoprecipitation with specific antibodies and by mass spectrometry, we found that Piwi proteins are arginine methylated at conserved positions in their amino termini. These modifications are essential to direct complex formation with specific Tudor-domain proteins, whose interactions with Piwis can be required for localization of RNP complexes in cytoplasmic nuage, proper piRNA expression, and transposon silencing. Considered together, our findings indicate that arginine methylation drives the assembly of multi-protein machines whose integrity and specific sub-cellular localization is necessary for efficient function of the piRNA pathway. Keywords: gene regulation study Overall design: Total small RNA in embryonic and post-birth mouse testes of tdrd1 and tdrd6 mutants
RNF17 blocks promiscuous activity of PIWI proteins in mouse testes.
No sample metadata fields
View SamplesGenome-wide gene expression was obtained in three auditory brainstem nuclei (defined below), at two different ages in mice, postnatal day (P)3 and P14. The primary aim was to identify genes which are differentially expressed between the medial nucleus of the trapezoid body (MNTB) and the superior olive (LSO), at both age groups.
BMP signaling specifies the development of a large and fast CNS synapse.
Sex, Specimen part
View SamplesThe function of Structural maintenance of chromosome flexible domain containing 1 (Smchd1) was examined during mouse preimplantation development using an siRNA knockdown approach. Transient SMCHD1 deficiency during the period between fertilization and morula/early blastocyst stage compromised embryo viability and resulted in reduced cell number, reduced embryo diameter, and reduced nuclear volumes at the morula stage. RNAseq analysis of Smchd1 knockdown morulae revealed aberrant increases in expression of mRNAs related to the trophoblast lineage, indicating SMCHD1 inhibits trophoblast lineage gene expression and promotes inner cell mass formation. siRNA knockdown also reduced expression of cell proliferation genes, including S-phase kinase-associated protein 2 (Skp2). Smchd1 expression was elevated in Caudal type homeobox transcription factor 2 (Cdx2)-/- blastocysts, indicating enriched expression, and further indicating a role in inner cell mass development. These results indicate that Smchd1 plays dual roles in the preimplantation embryo, promoting a lineage-appropriate pattern of gene expression supporting inner cell mass formation, whilst controlling lineage formation and gene expression in the trophectoderm. Overall design: Effects of SMCHD1 siRNA knockdown were tested in mouse embryos
Novel key roles for structural maintenance of chromosome flexible domain containing 1 (Smchd1) during preimplantation mouse development.
Treatment, Subject
View Samples