Differential gene expression profiling in PPP2R2A depleted RT-112 cells was performed using Human Genome U133 Plus 2.0 Array
MKAD-21 Suppresses the Oncogenic Activity of the miR-21/PPP2R2A/ERK Molecular Network in Bladder Cancer.
Specimen part, Cell line
View SamplesTumor-specific alternative splicing is implicated in the progression of cancer, including clear cell renal cell carcinoma (ccRCC). Using ccRCC RNA-sequencing data from The Cancer Genome Atlas, we found that epithelial splicing regulatory protein 2 (ESRP2), one of the key regulators of alternative splicing in epithelial cells, is expressed in ccRCC. ESRP2 mRNA expression did not correlate with the overall survival rate of ccRCC patients, but the expression of some ESRP-target exons correlated with the good prognosis and with the expression of Arkadia (also known as RNF111) in ccRCC. Arkadia physically interacted with ESRP2, induced polyubiquitination, and modulated its splicing function. Arkadia and ESRP2 suppressed ccRCC tumor growth in a coordinated manner. Lower expression of Arkadia correlated with advanced tumor stages and poor outcomes in ccRCC patients. This study thus reveals a novel tumor-suppressive role of the Arkadia-ESRP2 axis in ccRCC. Overall design: Expression of mRNA in a ccRCC cell line OS-RC-2 under the knockdown of Arkadia or ESRP2. Knock-down of ESRP2 was confirmed by RT-PCR because of low expression of ESRP2 which resulted in non-quantitative FPKM value.
The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma.
No sample metadata fields
View SamplesWe evaluated the role of Arkadia and ESRP2 in HEK293T cells Overall design: Expression of mRNA in HEK293T cells under the knockdown of Arkadia or ESRP2
The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.
Specimen part, Cell line, Treatment
View SamplesTumor microenvironment plays a pivotal role in cancer progression; however, little is known regarding how differences in the microenvironment affect characteristics of cancer cells. Here, we investigated the effects of tumor microenvironment on cancer cells by using mouse tumor models. After 3 cycles of inoculation and extraction of human pancreatic cancer cells, including SUIT-2 and Panc-1 cells, from tumors, distinct cancer cell lines were established; 3P cells from the pancreas obtained using the orthotopic tumor model, and 3sc cells from subcutaneous tissue obtained using the subcutaneous tumor model. On cell re-inoculation of these cells, the 3sc cells and, more prominently, the 3P cells, exhibited higher tumorigenic activity than the parental cells. The 3P cells specifically exhibited low E-cadherin expression and high invasiveness, suggesting that they were endowed with the highest malignant characteristics. RNA-sequence analysis demonstrated that distinct signaling pathways were activated in each cell line and that the 3P cells acquired a cancer stem cell-like phenotype. Among cancer stem cell-related genes, those specifically expressed in the 3P cells, including NES, may be potential new targets for cancer therapy. The mechanisms underlying the development of highly malignant cancer cell lines were investigated. Individual clones within the parental cells varied in tumor-forming ability, indicating the presence of cellular heterogeneity. Moreover, the gene expression profile of each clone changed after orthotopic inoculation. The present study thus suggests that both selection and education processes are involved in the development of highly malignant cancer cells. Overall design: Expression of mRNA in the highly malignant sublines of SUIT-2 and Panc-1 cells xenografted into mice.
Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells.
Subject
View SamplesWe determined and analyzed the effect of TTF-1/NKX2-1 on Smad3/Smad4 binding sites by ChIP-sequencing.
A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.
Specimen part, Cell line
View SamplesTTF-1/NKX2-1 was expressed by adenoviral vector and changes in gene expression were determined by RNA-sequencing. Overall design: A549 cells were infected with Ad-TTF-1 or Ad-LacZ vectors and stimulated with TGF-beta for 24 hours or left untreated. Expression of polyA RNA was determined.
A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif.
Specimen part, Cell line, Treatment
View SamplesSmad1/5 are transcription factors that engage in BMP-induced transcription. We determined and analyzed Smad1/5 binding sites by ChIP-sequencing.
ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif.
Specimen part, Treatment
View SamplesWe evaluated the effect of NORAD (also known as LINC00657 or LOC647979) shRNA on TGF-beta induced changes in the gene expression in A549 cells by RNA-seq. Overall design: mRNA expression was determined in a lung adenocarcinoma cancer cell line A549 infected with NORAD shRNA-expressing lentiviral vector and treated with TGF-beta.
Long noncoding RNA NORAD regulates transforming growth factor-β signaling and epithelial-to-mesenchymal transition-like phenotype.
Cell line, Subject
View Samples