The composition of the matrix molecules is important in in vitro cell culture experiments of e.g. human cancer invasion and vessel formation. Currently, the mouse Engelbreth-Holm-Swarm (EHS) sarcoma -derived products, such as Matrigel, are the most commonly used tumor microenvironment mimicking (TMEM) matrices for experimental studies. However, since Matrigel is non-human in origin, its molecular composition does not accurately simulate human TMEM and we expect myogel to be more natural environment for human cancer cells. The environment may have crucial impact on cell behavior and gene expression.
A novel human leiomyoma tissue derived matrix for cell culture studies.
Cell line
View SamplesIRAK4 kinase plays a critical role in innate immune responses and inflammation by modulating the TLR/IL-1R signaling pathway, yet the mechanism by which it regulates downstream pathways and transcription factors to induce inflammatory cytokines is unclear. IRAK4 can mediate signaling events by mechanisms both dependent and independent of its kinase activity. Understanding this regulation is important for deciphering the role of IRAK4 and for the development of treatments for inflammatory diseases and cancer. Through transcriptomic and biochemical analyses of primary human monocytes treated with a highly potent and selective inhibitor of IRAK4, we show that IRAK4 kinase activity controls the transcription factor IRF5 which in turn induces inflammatory cytokine and type I interferon transcription in myeloid cells. We also show that IRAK4 kinase activity does not control activation of NF-B. Following TLR stimulation, translocation of IRF5, but not NF-B, to the nucleus in human monocytes is abolished by IRAK4 kinase inhibition. In addition, binding of IRF5, but not NF-B p65, to promoters of inflammatory target genes (TNF- and IP10) is blocked with an IRAK4 kinase inhibitor. IKK, a known activator of IRF5, is phosphorylated in response to TLR mediated signaling, and inhibition of IRAK4 kinase blocks IKK phosphorylation. Pharmacological inhibition of IKK and TAK1, the upstream kinase of IKK, in human monocytes blocks IL-1, IL-6 and TNF- cytokine production, as well as IRF5 translocation to the nucleus. Taken together, our data suggest a novel mechanism by which IRAK4 kinase activity regulates TAK1 and IKK activation, leading to the translocation of IRF5 and induction of inflammatory cytokines in human monocytes.
IRAK4 kinase activity controls Toll-like receptor-induced inflammation through the transcription factor IRF5 in primary human monocytes.
Treatment
View SamplesThe identification of Lgr5 as an intestinal stem cell marker has made it possible to isolate and study primary stem cells from small intestine. Using the cell cycle specific expression og the mKi67 gene, we generated a novel Ki67-RFP knock-in allele which identifies dividing cells. Using Lgr5-GFP;Ki67-RFP mice, we isolated CBCs with distinct Wnt signaling levels and cell cycle features, and analyzed their global gene expression pattern using microarrays. We concluded that the cycling Lgr5hi stem cells exit the cell cycle in transition into the secretory lineage. Lgr5med Ki67low intermediate precursors reside in the zone of differentiation, resemble quiescent stem cells and generate the Dll1+ secretory precursors and the label retaining cells. Our findings support the cycling stem cell hypothesis and highlight the heterogeneity of early progenitors during lineage commitment.
Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele.
Specimen part
View SamplesIdentifying the genes underlying quantitative trait loci (QTL) for disease has proven difficult, mainly due to the low resolution of the approach and the complex genetics involved. However, recent advances in bioinformatics and the availability of genetic resources now make it possible to narrow the genetic intervals and test candidate genes. In addition to identifying the causative genes, defining the pathways that are affected by these QTL is of major importance as it can give us insight into the disease process and provide evidence to support candidate genes. In this study we mapped three significant and one suggestive QTL on Chromosomes (Chrs) 1, 4, 15, and 17, respectively, for increased albumin excretion (measured as albumin-to-creatinine ratio) in a cross between the MRL/MpJ and SM/J mouse inbred strains. By combining data from several sources and by utilizing gene expression data, we identified Tlr12 as a likely candidate for the Chr 4 QTL. Through the mapping of 33,881 transcripts measured by microarray on kidney RNA from each of the 173 male F2 animals, we identified several downstream pathways associated with these QTL. Among these were the glycan degradation, leukocyte migration, and antigen presenting pathways. We demonstrate that by combining data from multiple sources, we can identify not only genes that are likely to be causal candidates for QTL, but also the pathways through which these genes act to alter phenotypes. This combined approach provides valuable insights into the causes and consequences of renal disease.
Uncovering genes and regulatory pathways related to urinary albumin excretion.
Sex, Age
View SamplesThis study compares the gene expression changes in Sus scrofa in response to two different methods for abdominal surgical incisions ; electrosurgery and harmonic blade.
Ultrasonic incisions produce less inflammatory mediator response during early healing than electrosurgical incisions.
Specimen part, Treatment
View SamplesBulk RNA-seq to profile of c-kit+ cardiac interstitial cells, comparing the transcriptomes of Pim-1 enhanced cardiac progenitor cells and transfection control Overall design: Transcriptional profiling of Pim-1 enhanced human derived cardiac interstitial cells by bulk RNA-Seq
Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells.
Specimen part, Subject
View SamplesNearly all colorectal cancers have dysregulated Wnt signalling, predominantly through the mutation of the Apc (Adenomatous Polyposis Coli) gene. Therefore it is of vital importance to elucidate the key Wnt target genes in intestinal cells in vivo. We have used a novel inducible cre-lox based murine system (designated ApcFlox) to investigate the consequences of perturbation of Wnt signalling following inactivation of Apc in vivo within 100% of the intestinal epithelium. We have employed microarray analysis at 3 time points within our ApcFlox system (Day 3 prior to the onset of phenotype, day 4 the establishment of the phenotype and day 5 gross phenotype of altered proliferation, differentiation and migration) and from adenomas arising in the ApcMin/+ background allowing us characterise Wnt/beta-catenin target genes based on their expression profiles during different stages of intestinal tumourigenesis. Furthermore, we have employed microarray analysis using livers from our ApcFlox system and have demonstrated that there is very little overlap in the Wnt target genes induced by Apc loss in the liver and the intestine. More importantly, we have been able to determine a novel set of putative Wnt/beta-catenin target genes which are upregulated at both early and late stages of tumourigenesis in the intestine and may represent novel therapeutic targets in colon cancer.
Hunk/Mak-v is a negative regulator of intestinal cell proliferation.
Specimen part
View SamplesThe intermediate filament protein Nestin serves as a biomarker for stem cells and has been used to identify subsets of cancer stem-like cells. However, the mechanistic contributions of Nestin to cancer pathogenesis are not understood. Here we report that Nestin binds the hedgehog pathway transcription factor Gli3 to mediate the development of medulloblastomas of the hedgehog subtype. In a mouse model system, Nestin levels increased progressively during medulloblastoma formation resulting in enhanced tumor growth. Conversely, loss of Nestin dramatically inhibited proliferation and promoted differentiation. Mechanistic investigations revealed that the tumor-promoting effects of Nestin were mediated by binding to Gli3, a zinc finger transcription factor that negatively regulates hedgehog signaling. Nestin binding to Gli3 blocked Gli3 phosphorylation and its subsequent proteolytic processing, thereby abrogating its ability to negatively regulate the hedgehog pathway. Our findings show how Nestin drives hedgehog pathway-driven cancers and uncover in Gli3 a therapeutic target to treat these malignancies.
Nestin Mediates Hedgehog Pathway Tumorigenesis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer.
Cell line
View SamplesERG overexpression is the most frequent molecular alteration in prostate cancer. We analyzed different stages of prostate cancer to identify genes that were coexpressed with ERG overexpression. In primary prostate tumors, it was shown that TDRD1 expression was the strongest correlated gene with ERG overexpression and we suggest TDRD1 as a direct ERG target gene.
Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer.
No sample metadata fields
View Samples