IPH-926 is an anticancer drug-resistant tumor cell line derived from a chemo-refractory human infiltrating lobular breast cancer (ILBC). IPH-926 ILBC cells were subjected to gene expression profiling using an Affymetrix HG U133 Plus 2.0 array.
ABCB1/MDR1 contributes to the anticancer drug-resistant phenotype of IPH-926 human lobular breast cancer cells.
Specimen part, Cell line
View SamplesHuman solid tumors contain rare cancer side population (SP) cells, which expel the fluorescencent dye H33342 and display cancer stem cell characteristics. Transcriptional profiling of cancer SP cells isolated by H33342 fluorescence analysis is a newly emerging approach to discover cancer stem cell markers and aberrant differentiation pathways. Using Affymetrix expression microarrays this study investigated differential gene expression between SP and non-SP (NSP) cells isolated from the CAL-51 human mammary carcinoma cell line.
Down-regulation of the fetal stem cell factor SOX17 by H33342: a mechanism responsible for differential gene expression in breast cancer side population cells.
Specimen part
View SamplesThe ts-p53 E285K protein is a rare p53 mutant with temperature-sensitive (ts) loss of function characteristics. In cancer cells, which express ts-p53 E285K intriniscally, endogenous wild type p53 activity is reconstituted by appropriate cultivation temperature (permissive condition). At non-appropriate cultivation temperature (restrictive condition) this p53 mutant is inactive. The present study took advantage of this mechanism and employed IPH-926 lobular breast cancer cells and BT-474 ductal breast cancer cells, which both harbor endogenous ts-p53 E285K, for the transcriptional profiling of p53-responsive genes. This new approach eliminated the need for genetic modification or cytotoxic stimulation to achive a p53 response in the cells being investigated .
IPH-926 lobular breast cancer cells harbor a p53 mutant with temperature-sensitive functional activity and allow for profiling of p53-responsive genes.
Specimen part, Cell line, Treatment
View SamplesKnockdown of HCLS1 mRNA in CD34+ hematopoietic cells resulted in a severe diminished in vitro myeloid differentiation which was in line with downregulation of a set of genes, e.g., of Wnt or PI3K/Akt signaling cascades. We performed microarrays to evaluate specific genes and signaling systems regulated by HCLS1 in hematopoietic cells.
Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF-triggered granulopoiesis.
Specimen part, Disease, Disease stage, Treatment
View SamplesExamination of gene expression patterns in lineage negative FLT3-ITD and pMIG-transduced BM cells via microarray study.
RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells.
Specimen part
View SamplesPeripheral blood lymphocytes were separated in the Ficoll gradient and subjected for stimulation with anti-CD3 and anti-CD28 antiobodies upon time (6h, 12h and 18h). Next, total RNA was isolated and trenscriptional analysis of stimulated cells was performed.
Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome.
Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.
Specimen part
View SamplesExpression response after induction of putative phrenic neuronal determinants in ES cell-derived motor neurons was compared to a pre-determined list of genes over-expressed in FACS-sorted primary.
Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.
Specimen part
View SamplesExpression response after induction of putative phrenic neuronal determinants in ES cells was compared to a pre-determined list of genes over-expressed in FACS-sorted phrenic cells.
Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.
Specimen part
View SamplesNeutrophil lysis after phagocytosis is a process potentially important in the pathogenesis of community-associated methicillin-resistant S. aureus (CA-MRSA) infection. The mechanism for this process is not currently known. Therefore, to better understand CA-MRSA virulence we used human oligonucleotide microarrays to investigate the mechanism underlying enhanced PMN lysis that occurs after phagocytosis of CA-MRSA.
Rapid neutrophil destruction following phagocytosis of Staphylococcus aureus.
Specimen part, Treatment
View Samples