Next-generation sequencing (NGS) technology applications like RNA-sequencing (RNA-seq) have dramatically expanded the potential for novel genomics discoveries, but the proliferation of various platforms and protocols for RNA-seq has created a need for reference data sets to help gauge the performance characteristics of these disparate methods. Here we describe the results of the ABRF-NGS Study on RNA-seq, which leverages replicate experiments across multiple sites using two reference RNA standards tested with four protocols (polyA selected, ribo-depleted, size selected, and degraded RNA), and examined across five NGS platforms (Illumina’s HiSeqs, Life Technologies’ Personal Genome Machine and Proton, Roche 454 GS FLX, and Pacific Biosciences RS). These results show high (R2 >0.9) intra-platform consistency across test sites, high inter-platform concordance (R2 >0.8) for transcriptome profiling, and a large set of novel splice junctions observed across all platforms. Also, we observe that protocols using ribosomal RNA depletion can both salvage degraded RNA samples and also be readily compared to polyA-enriched fractions. These data provide a broad foundation for standardization, evaluation and improvement of RNA-seq methods. Overall design: Two reference RNA standards tested with four protocols (polyA selected, ribo-depleted, size selected, and degraded RNA), and examined across five NGS platforms (Illumina’s HiSeqs, Life Technologies’ Personal Genome Machine and Proton, Roche 454 GS FLX, and Pacific Biosciences RS). Please note that the samples were named following the ABRF-Platform-Site-Sample-Replicate# format. For example, ABRF-454-CNL-A-1 means Sample A was run on 454 platform at Cornell and this is the first replicate, and ABRF-454-CNL-A-2 means the same exact sample was ran with same machine at same location and is 2nd replicate.
RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase.
Specimen part, Subject
View SamplesThe paired-end next-generation sequencing of all small RNAs of less than 200 nucleotides in length from four different human cell lines (SKOV3ip1, MCF-7, BJ-Tielf, INOF) allowed us to determine the exact sequence(s) and variations of human box C/D snoRNAs (small nucleolar RNAs), revealing processing patterns of this class of molecules. Two distinct groups of box C/D snoRNAs were identified based on the position of their ends with respect to their characteristic boxes and the terminal base pairing potential. Short box C/D snoRNAs start sharply 4 or 5 nucleotides upstream of their box C and end 2 or 3 nucleotides downstream of their box D. In contrast, long box C/D snoRNAs start 5 or 6 nucleotides upstream of their box C and end 4 or 5 nucleotides downstream of their box D, increasing the likelihood of formation of a k-turn between their boxes C and D. Sequencing of SKOV3ip1 cells following the depletions of NOP58, a core box C/D snoRNA-binding protein and of RBFOX2, a splicing factor, shows that the short box C/D snoRNA forms are significantly more affected by the depletion of RBFOX2 while the long snoRNA forms, which display more canonical box C/D snoRNA features, are significantly more affected by the depletion of NOP58. Together the data suggest that box C/D snoRNAs are divided into at least two groups of RNA with distinct maturation and functional preferences. Overall design: Small RNAs (<200 nucleotides) were isolated from different human cell lines that were either untreated or depleted of NOP58 or RBFOX2 using specific siRNAs. The resulting libraries were multiplexed and paired-end sequenced using Illumina HiSeq.
Simultaneous sequencing of coding and noncoding RNA reveals a human transcriptome dominated by a small number of highly expressed noncoding genes.
No sample metadata fields
View SamplesThe cerebral cortex underwent a rapid expansion and complexification during recent primate evolution, but the underlying developmental mechanisms remain essentially unknown.
Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene copy number aberrations are associated with survival in histologic subgroups of non-small cell lung cancer.
Specimen part
View SamplesHypothesis: Non-small cell lung cancer (NSCLC) is characterized by a multitude of genetic aberrations with unknown clinical impact. In this study, we aimed to identify gene copy number changes that correlate with clinical outcome in NSCLC. To maximize the chance to identify clinically relevant events, we applied a strategy involving two prognostically extreme patient groups.
Gene copy number aberrations are associated with survival in histologic subgroups of non-small cell lung cancer.
Specimen part
View SamplesThe delicate interaction between cancer cells and the surrounding stroma plays an essential role in all stages of tumourigenesis. Despite the significance of this interplay, alterations in protein composition underlying tumour-stroma interactions are largely unknown. The aim of this study was to identify stromal proteins with clinical relevance in non-small cell lung cancer.
CD99 is a novel prognostic stromal marker in non-small cell lung cancer.
Specimen part, Subject
View SamplesAnalysis of HeLa cells following depletion of BRCA1 tumor supressor using RNAi against BRCA1. Results provide insight into the molecular mechanisms underlying loss of the BRCA1 function.
BRCA1 represses amphiregulin gene expression.
Treatment
View SamplesSaturated fatty acids (SFA) are widely thought to induce inflammation in adipose tissue (AT), while monounsaturated fatty acids (MUFA) are purported to have the opposite effect; however, it is unclear if individual SFA and MUFA behave similarly. Our goal was to examine adipocyte transcriptional networks regulated by individual SFA (palmitic acid, PA; stearic acid, SA) and MUFA (palmitoleic acid, PMA; oleic acid, OA).
Individual saturated and monounsaturated fatty acids trigger distinct transcriptional networks in differentiated 3T3-L1 preadipocytes.
Specimen part
View SamplesWhole blood (paxgene) gene expression was measured using Affymetrix microarray from 377 individuals with rheumatoid arthritis.
Integrative genomic deconvolution of rheumatoid arthritis GWAS loci into gene and cell type associations.
Sex, Age, Specimen part, Disease
View SamplesIn comparing gene expression of normal and CML CD34+ quiescent (G0) and proliferating (G1/S/G2/M) cells, 292 genes were down-regulated and 192 genes were up-regulated in the CML G0 cells. The differentially expressed genes were grouped according to their reported functions and correlations were sought with biological differences previously observed between the same groups. The most apparent correlations include: i) Normal and CML G0 cells are more primitive than G1/S/G2/M cells; ii) CML G0 cells are in a more advanced stage of development and more poised to begin proliferating than normal G0 cells; iii) When CML G0 cells are stimulated to proliferate, they undergo further differentiation and maturation more rapidly than normal G0 cells, but both granulopoiesis and erythropoiesis are less efficient than normal; iv) Whereas normal G0 cells form only granulocyte/monocyte (GM) colonies when stimulated by cytokines, CML G0 cells consistently form a combination of GM and erythroid clusters and colonies; and v) Prominin-1 (CD133) is the gene most down-regulated in CML G0 cells and its down-regulation appears to be associated with the spontaneous formation of erythroid colonies by CML progenitors without EPO. The gene most over-expressed in CML G0 cells is LepR, but its role in contributing to the myeloid expansion and other abnormalities is unknown. It was hoped that LepR might serve as a therapeutic target, but leptin had no stimulatory or inhibitory effect on either normal or CML G0 cells, our attempts to make a specific LepR antibody were unsuccessful, and no other potentially targetable over-expressed surface antigens were identified.
Gene Expression Differences between Enriched Normal and Chronic Myelogenous Leukemia Quiescent Stem/Progenitor Cells and Correlations with Biological Abnormalities.
Specimen part, Disease, Disease stage
View Samples