The cellular origin of Ewing tumor (ET), a tumor of bone or soft tissues characterized by specific fusions between EWS and ETS genes, is highly debated. Through gene expression analysis comparing ETs with a variety of normal tissues, we show that the profiles of different EWS-FLI1-silenced Ewing cell lines converge toward that of mesenchymal stem cells (MSC). Moreover, upon EWS-FLI1 silencing, two different Ewing cell lines can differentiate along the adipogenic lineage when incubated in appropriate differentiation cocktails. In addition, Ewing cells can also differentiate along the osteogenic lineage upon long-term inhibition of EWS-FLI1. These in silico and experimental data strongly suggest that the inhibition of EWS-FLI1 may allow Ewing cells to recover the phenotype of their MSC progenitor.
Mesenchymal stem cell features of Ewing tumors.
Specimen part
View SamplesWhsc1 gene codes for a SET domain-containing H3K36 dimethylase, whose activity has been suggested, in ex vivo cell culture experiments, to control many aspects of DNA and RNA processing (replication, repair, transcription, etc). Its precise function in vivo is still unclear. Here, we use RNA-seq transcriptome analysis to study the changes in gene expression in the absence of Whsc1. Our results show that, in the experimental system used, loss of Whsc1 caused massive changes in genes affecting many fundamental cellular processes, from cell cycle to ribosome synthesis, DNA repair, replication, etc. Overall design: Whsc1-KO mice are embryonic lethal. We therefore took hematopoietic cells from fetal liver of WT and Whsc1-KO embryo littermates and injected them in to lethally irradiated RAG1-KO recipients and allowed the generation of a full Whsc1-KO hematopoietic system. Then, WT and Whsc1-KO B cells were obtained from the spleen and stimulated with LPS to induce proliferation and class switch recombination. Flow cytometry and cell cycle analyses (among others) showed the existence of serious proliferative alterations in Whsc1-KO cells. Then, we performed paired-end RNAseq analyses of 7 independent WT and 6 independent Whsc1-KO biological replicates and we used these data to identify differentially expressed genes and pathways regulated by Whsc1 in B cells.
Wolf-Hirschhorn Syndrome Candidate 1 Is Necessary for Correct Hematopoietic and B Cell Development.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle.
Specimen part, Treatment
View SamplesBackground: Cancer cachexia is a life-threatening metabolic syndrome that causes significant loss of skeletal muscle mass and significantly increases mortality in cancer patients. Currently, there is an urgent need for better understanding of the molecular pathophysiology of this disease, so that effective therapies can be developed. Almost all pre-clinical studies evaluating skeletal muscle’s response to cancer have focused on one or two pre-clinical models, and almost all have focused specifically on limb muscles. In the current study, we reveal key differences in the histology and transcriptomic signatures of a limb muscle and a respiratory muscle in orthotopic pancreatic cancer patient-derived xenograft (PDX) mice. Methods: To create the four cohorts of PDX mice evaluated in this study, tumors resected from four pancreatic ductal adenocarcinoma (PDAC) patients were portioned and attached to the pancreas of immunodeficient NSG mice. Results: Body weight, muscle mass, and fat mass were significantly decreased in each PDX line. Histological assessment of cryosections taken from the tibialis anterior (TA) and diaphragm (DIA) revealed differential effects of tumor-burden on their morphology. Subsequent genome-wide microarray analysis on TA and DIA revealed key differences between their transcriptomes in response to cancer as well. Indeed, upregulated genes in the diaphragm were enriched for extracellular matrix (ECM) protein-encoding genes and genes related to the inflammatory response, and downregulated genes were enriched for mitochondria related protein-encoding genes. Conversely, the TA showed upregulation of canonical atrophy-associated pathways such as ubiquitin-mediated protein degradation and apoptosis and enrichment of downregulated genes encoding ECM proteins. Conclusions: These data suggest that distinct biological processes account for wasting in different skeletal muscles in response to the same tumor burden. Further investigation into these differences will be critical for the future development of effective clinical strategies to counter cancer cachexia.
Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle.
Specimen part, Treatment
View SamplesWe demonstrated recently that both constitutive and FAS-triggered apoptosis of human neutrophils are profoundly impaired by Francisella tularensis, but how this is achieved is largely unknown. To test the hypothesis that changes in neutrophil gene expression contribute to this phenotype, we used human oligonucleotide microarrays to identify differentially regulated genes in cells infected with F. tularensis strain LVS compared with uninfected controls.
Francisella tularensis alters human neutrophil gene expression: insights into the molecular basis of delayed neutrophil apoptosis.
Specimen part, Time
View SamplesGEP on Affymetrix Genechip HTA 2.0 microarrays was performed on ex vivo cell-sorted GC-Tfh and pre-Tfh from TONS and FL
Human Lymphoid Stromal Cells Contribute to Polarization of Follicular T Cells Into IL-4 Secreting Cells.
Specimen part, Treatment
View SamplesRNA was purified from GFAP::GFP+CD133+ and GFAP::GFP+CD133+EGFR+ cells isolated from the adult mouse V-SVZ niche (GFAP::GFP mice, Jackson Mice Stock number 003257)
Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche.
Specimen part
View SamplesGEP on Affymetrix U133+2.0 microarrays was performed on in vitro expanded stromal cells
Human Lymphoid Stromal Cells Contribute to Polarization of Follicular T Cells Into IL-4 Secreting Cells.
Specimen part
View SamplesThe Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is comprised of four proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and found that MED12 localizes to transcription factor consensus sequences within calcium handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes, and that MED12 and MEF2 co-occupy promoters of calcium handling genes. Furthermore, we demonstrated that MED12 enhances MEF2 transcriptional activity and overexpression of both increases expression of calcium handling genes in cardiomyocytes. Our data support a role for MED12 as a coordinator of transcription through MEF2 and other transcription factors. We conclude that MED12 is a regulator of a network of calcium handling genes, consequently “mediating” contractility in the mammalian heart. Overall design: Ventricle mRNA profiles of 1-day old control (CTL, CreNEG) and cardiac-specific Med12 knockout mice (Med12cKO, CrePOS) were generated by deep sequencing, in triplicate, using Illumina.
MED12 regulates a transcriptional network of calcium-handling genes in the heart.
No sample metadata fields
View SamplesTo get insight in the functional role of EGR2 for Ewing sarcoma, we performed a transcriptional profiling of Ewing sarcoma cells after knockdown of EGR2 and compared the resulting transcriptional signature with that of EWSR1-FLI1-silenced Ewing sarcoma cells. In accordance with the strong EGR2-induction by EWSR1-FLI1, both genes highly significantly overlap in their transcriptional signatures. Gene-set enrichment analyses (GSEA) and DAVID (Database for Annotation, Visualisation and Integrated Discovery) gene ontology analyses indicated a strong impact of EGR2 on cholesterol and lipid biosynthesis resembling its function in orchestrating lipid metabolism of myelinating Schwann cells.
Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite.
Cell line, Treatment
View Samples