Tissue samples have been isolated during corornary artery by-pass grafting (CABG)surgery from the atheroscelrotic arterial wall (AAW, aortic root puncture for proxmal ligation of by-pass vessel), non-atherosclertoci arterial wall (NAAW, distal part of mammary artery used a graft for LAD), liver, skeletal muscle (Recturs m), pericardial mediastinal visceral fat) in CAD patients. Carotid lesions samples from 25 validation patients.
Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE) study.
Specimen part
View SamplesCalicum plays critical roles in developing T cells, promoting survival, proliferation, and differentiation at multiple stages of maturation. Calcium release from intracellular stores due to T cell receptor and pre-T cell receptor signaling is thought to require the inositol triphosphate receptors (Itpr), however the requirement for these receptors has not been investigated. We used microarrays to examine gene expression differences between control and Itpr deficient T cell progenitors.
Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia.
Sex, Age, Specimen part
View SamplesTNF-a is increased in the synovial fluid of patients with rheumatoid arthritis and osteoarthritis. TNF-a activates MEK/ERK in chondrocytes; however the overall functional relevance of MEK/ERK to TNF-a-regulated gene expression in chondrocytes is unknown. Chondrocytes were treated with TNF-a with or without the MEK1/2 inhibitor U0126 for 24 h. Microarray analysis was used to identify genes regulated by TNF-a in a MEK1/2-dependent fashion.
Egr-1 inhibits the expression of extracellular matrix genes in chondrocytes by TNFalpha-induced MEK/ERK signalling.
No sample metadata fields
View SamplesMicroarray analysis was used to show that in gingival fibroblasts essentially all TGFB1 responsive genes were blocked by TAK inhibition
5Z-7-Oxozeanol Inhibits the Effects of TGFβ1 on Human Gingival Fibroblasts.
Specimen part, Treatment
View SamplesMetzincins and related genes (MARGS) play important roles in ECM remodeling in fibrotic conditions.
Renal Fibrosis mRNA Classifier: Validation in Experimental Lithium-Induced Interstitial Fibrosis in the Rat Kidney.
Sex, Specimen part
View SamplesEndothelin-1 (ET-1) plays a critical role in connective tissue remodeling by fibroblasts during tissue repair and fibrosis. We investigated the molecular pathways in the transmission of ET-1 signals that lead to features of connective tissue remodeling, in particular the role of FAK (focal adhesion kinase).
Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation.
Specimen part, Treatment
View Sampleswe report additional phenotypes of mHtt mice that are modified in Pin1 knock-out mice Overall design: RNAs from the striatum of three mice of 12 months of age were purified for each of the genotypes (PinWT/HttWT; PinKO/HttWT; PinWT/HttKI; PinKO/HttKi) to carry out gene expression profiling
Effects of Pin1 Loss in Hdh(Q111) Knock-in Mice.
No sample metadata fields
View SamplesThis data provides evidence that elevation of cAMP levels has a dramatic effect on the transcriptome of yeast cells, with particular emphasis on mitochondrial function and the promotion of ROS production
cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation.
Treatment
View SamplesPlant respiration responses to elevated growth [CO2] are key uncertainties in predicting future crop and ecosystem function. In particular, the effects of elevated growth [CO2] on respiration over leaf development are poorly understood. This study tested the prediction that, due to greater whole-plant photoassimilate availability and growth, elevated [CO2] induces transcriptional reprogramming and a stimulation of nighttime respiration in leaf primordia, expanding leaves, and mature leaves of Arabidopsis thaliana. In primordia, elevated [CO2] altered transcript abundance, but not for genes encoding respiratory proteins. In expanding leaves, elevated [CO2] induced greater glucose content and transcript abundance for some respiratory genes, but did not alter respiratory CO2 efflux. In mature leaves, elevated [CO2] led to greater glucose, sucrose and starch content, plus greater transcript abundance for many components of the respiratory pathway, and greater respiratory CO2 efflux. Therefore, growth at elevated [CO2] stimulated dark respiration only after leaves transitioned from carbon sinks into carbon sources. This coincided with greater photoassimilate production by mature leaves under elevated [CO2] and peak respiratory transcriptional responses. It remains to be determined if biochemical and transcriptional responses to elevated [CO2] in primordial and expanding leaves are essential prerequisites for subsequent alterations of respiratory metabolism in mature leaves.
Developmental stage specificity of transcriptional, biochemical and CO2 efflux responses of leaf dark respiration to growth of Arabidopsis thaliana at elevated [CO2].
No sample metadata fields
View SamplesTranscriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.
Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.
Age, Specimen part
View Samples