refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 32 results
Sort by

Filters

Technology

Platform

accession-icon GSE22580
Gene expression profile of normal human mammary epithelial stem/progenitor and myoepithelial cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

There is increasing evidence that breast and other cancers originate from and are maintained by a small fraction of stem/progenitor cells with self-renewal properties. Whether such cancer stem/progenitor cells originate from normal stem cells based on initiation of a de novo stem cell program, by reprogramming of a more differentiated cell type by oncogenic insults or both remains unresolved. A major hurdle in addressing these issues is lack of immortal human stem/progenitor cells that can be deliberately manipulated in vitro. We present evidence that normal and human telomerase reverse transcriptase (hTERT)-immortalized human mammary epithelial cells (hMECs) isolated and maintained in DFCI-1 medium retain a fraction with progenitor cell properties. These cells co-express basal, luminal and stem/progenitor cell markers. Clonal derivatives of progenitors co-expressing these markers fall into two distinct types: K5+/K19- (Type I) and K5+/K19+ (Type II). We show that both types of progenitor cells have self-renewal and differentiation ability. Through microarray analysis, we want to identify genes and pathways linked to human mammary epithelial stem/progenitor cell self-renewal and differentiation.

Publication Title

Telomerase-immortalized human mammary stem/progenitor cells with ability to self-renew and differentiate.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE31570
The Dynamic Architecture of Hox Gene Clusters
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The spatial and temporal control of Hox gene transcription is essential for patterning the vertebrate body axis. Although this process involves changes in histone posttranslational modifications, the existence of particular three-dimensional (3D) architectures remained to be assessed in vivo. Using high-resolution chromatin conformation capture methodology, we examined the spatial configuration of Hox clusters in embryonic mouse tissues where different Hox genes are active. When the cluster is transcriptionally inactive, Hox genes associate into a single 3D structure delimited from flanking regions. Once transcription starts, Hox clusters switch to a bimodal 3D organization where newly activated genes progressively cluster into a transcriptionally active compartment. This transition in spatial configurations coincides with the dynamics of chromatin marks, which label the progression of the gene clusters from a negative to a positive transcription status. This spatial compartmentalization may be key to process the collinear activation of these compact gene clusters.

Publication Title

The dynamic architecture of Hox gene clusters.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE136582
Differential gene expression microarray analysis of Tregs and Teff cells expanded by TCR-dependent Vs independent methods
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

CD4+ cells from Foxp3.eGFP mice containing Foxp3- Teff and Foxp3+ Treg cells were treated with anti-CD3/CD28 monoclonal antibodies or soluble OX40L and JAG1 for 3 days to induce TCR-dependent vs TCR-independent Treg proliferation. Untreated fresh CD4+ T-cells used as control. Post treatment T-cell proliferation was confirmed by Cell Trace violet dilution and Foxp3+ (Treg) and Foxp3-(Teff) were sorted. Differential gene expression profiling between Tregs and Teff cells among control, anti-CD3/CD28 and OX40L-JAG1 treated cultured was performed using affymetrix mouse gene 2.0 ST micro array.

Publication Title

OX40L-JAG1-Induced Expansion of Lineage-Stable Regulatory T Cells Involves Noncanonical NF-κB Signaling.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP018707
Transcriptome along the murine developing gut
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Hox genes are required for the development of the intestinal caecum, a major organ of species eating plants. We have analysed the transcriptional regulation of Hoxd genes in caecal buds and show that they are controlled by a series of enhancers located in a gene desert telomeric to the HoxD cluster. The start site of two neighboring and opposite long non-coding RNAs, Hotdog and Twin of Hotdog, specifically transcribed in the caecum, contacts the expressed Hoxd genes in the framework of a topological domain, a large domain of interactions, which ensures a robust transcription of these genes during caecum budding. We show that hedgehogs have kept this regulatory potential despite the absence of caecum, suggesting that these enhancers are used in other developmental situations. In this context, we discuss some striking similarities between the caecum and the limb buds, suggesting the implementation of a common budding tool-kit. Overall design: Transcriptional activity at the HoxD locus in the murine developing gut at E13, Differential gene expression analysis along the murine developing gut

Publication Title

Multiple enhancers regulate Hoxd genes and the Hotdog LncRNA during cecum budding.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP018708
Transcriptome in developing caeca
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina Genome Analyzer II

Description

Hox genes are required for the development of the intestinal caecum, a major organ of species eating plants. We have analysed the transcriptional regulation of Hoxd genes in caecal buds and show that they are controlled by a series of enhancers located in a gene desert telomeric to the HoxD cluster. The start site of two neighboring and opposite long non-coding RNAs, Hotdog and Twin of Hotdog, specifically transcribed in the caecum, contacts the expressed Hoxd genes in the framework of a topological domain, a large domain of interactions, which ensures a robust transcription of these genes during caecum budding. We show that hedgehogs have kept this regulatory potential despite the absence of caecum, suggesting that these enhancers are used in other developmental situations. In this context, we discuss some striking similarities between the caecum and the limb buds, suggesting the implementation of a common budding tool-kit. Transcriptional activity at the HoxD locus in developing caeca at E13.5 Overall design: Transcriptional activity at the HoxD locus in developing caeca at E13.5

Publication Title

Multiple enhancers regulate Hoxd genes and the Hotdog LncRNA during cecum budding.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE21231
Gene expression changes associated with resistance to intravenous corticosteroid therapy in children with severe ulcerative colitis
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Although corticosteroids remain a mainstay of therapy for UC, a meta-regression of cohort studies in acute severe ulcerative colitis (UC) showed that 29% of patients fail corticosteroid therapy and require escalation of medical management or colectomy.

Publication Title

Gene expression changes associated with resistance to intravenous corticosteroid therapy in children with severe ulcerative colitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP069185
The mammalian LINC complex controls mechanosensing at a genome-wide level: RNA-Seq
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Mechanical cues influence the shape, growth, and function of tissues and organs and are necessary for the development of engineered tissues. Yet, how cells sense mechanical cues and transduce them into changes in gene expression is not well understood. It is known that mechanical forces transmitted to the nucleus induce chromatin remodeling, promote DNA repair, contribute to the motion of intranuclear organelles and cause direct dissociation of protein complexes inside nuclei. Yet, the extent to which such signals impact gene expression is not understood. Because mechanical forces from the cytoskeleton to the nucleus interior are transmitted by the LINC (linker of nucleoskeleton-to-cytoskeleton) complex, we disrupted the LINC complex and performed genome wide expression studies using RNA sequencing. LINC disruption altered the expression of hundreds of genes at a genome-wide scale. We asked how LINC disruption affected the mechanosensitivity of individual genes by quantifying fold changes in gene expression on soft and stiff substrates. Remarkably, LINC disruption tended to preserve gene mechanosensitivity, but to reverse its direction. LINC disruption did not cause changes in nuclear shape, nor eliminated nuclear shape sensitivity to substrate rigidity. Our results show for the first time that the LINC complex regulates mechano-sensing at a genome-wide level, and argue for a distinct mechanism that does not require changes in nuclear morphology. Overall design: mRNA profiles of NIH 3T3 TetON cells that were induced to express either SS-GFP-KDEL (control) or SS-HA-Sun1L-KDEL by the addition of doxycycline. Two (2) substrate stiffnesses were used (1 kPa and 308 kPa), Y27632 or blebbistatin was used for certain samples to inhibit myosin II activity. A total of 6x3 reps= 18 samples were analyzed.

Publication Title

The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE63038
Gene expression profiling of the human natural killer cell response to FcR activation in the presence of IL-12
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The majority of NK cells (~90%) are phenotypically characterized as CD56dimCD16+, while the remaining are CD56brightCD16-. The cytotoxic CD56dimCD16+ NK subset expresses higher levels of chemokine receptors, and therefore is preferentially recruited to sites of inflammation. Encounters between CD56dimCD16+ NK cells with target cells and locally secreted inflammatory cytokines synergize to induce activation of this subset, leading to dramatically increased cytotoxic activity against target cells and abundant pro-inflammatory cytokine production often equivalent to that of the CD56brightCD16- population. The early recruitment of activation of CD56dimCD16+ NK cells to sites of inflammation raises many important questions regarding the potential immune functions of these cells that extend beyond their cytotoxic capabilities. This study has sought to elucidate the genetic profile of activated CD56dimCD16+ NK cells via a series of laboratory-based approaches coupled with a bioinformatics persective.

Publication Title

Gene expression profiling of the human natural killer cell response to Fc receptor activation: unique enhancement in the presence of interleukin-12.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP061329
The LIN28B/let-7 axis is a novel therapeutic pathway in Multiple Myeloma
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

MYC is a major oncogenic driver of Multiple Myeloma (MM) and yet almost no therapeutic agents exist that target MYC in MM. Here we report that the let-7 biogenesis inhibitor LIN28B correlates with MYC expression in MM and is associated with adverse outcome. We also demonstrate that the LIN28B/let-7 axis modulates the expression of MYC, itself a let-7 target. Further, perturbation of the axis regulates the proliferation of MM cells in vivo in a xenograft tumor model. RNA sequencing and gene set enrichment analyses of CRISPR-engineered cells further suggest that the LIN28/let-7 axis regulates MYC and cell cycle pathways in MM. We provide proof-of-principle for therapeutic regulation of MYC through let-7 with an LNA-GapmeR containing a let-7b mimic in vivo, demonstrating that high levels of let-7 expression repress tumor growth by regulating MYC expression. These findings reveal a novel mechanism of therapeutic targeting of MYC through the LIN28B/let-7 axis in MM that may impact other MYC dependent cancers as well. Overall design: RNA sequencing of MOLP-8 cells transduced with lentiCRISPRv2 scrambled control or containing a sgRNA against LIN28B. Both control and LIN28B KO cells were sequenced in triplicate.

Publication Title

The LIN28B/let-7 axis is a novel therapeutic pathway in multiple myeloma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52141
Comparison of gene expression profiles of miR-142-/- primary megakaryocytes and WT primary megakaryocytes
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Whole fetal livers were collected from mouse fetuses at embryonic day 14.5 (E14.5), and single-cell suspensions were prepared by successive passage through 18-, 21 and 23-gauge needles. Fetal liver cells were maintained in Dulbecco modified Eagle medium (DMEM; Invitrogen) supplemented with 10% fetal bovine serum (FBS; Invitrogen), 100 U/ml penicillin, 100g/ml streptomycin, and 50ng/ml recombinant human thrombopoietin (TPO; Peprotech). After 5 days of culture, megakaryocytes were purified using a discontinuous bovine serum albumin gradient (BSA, SigmaAldrich; 3%, 1.5%, and 0%). Total RNA was isolated with TriReagent (MRC) following manufacturers instructions, and its quality was assessed with ND1000 Nanodrop (Peqlab) and on a 1.5% agarose gel.

Publication Title

miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact