refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 75 results
Sort by

Filters

Technology

Platform

accession-icon GSE14407
Ovarian Cancer gene expression profiling identifies the surface of the ovary as a stem cell niche
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In contrast to epithelial derived carcinomas that arise in most human organs, ovarian surface epithelial cells become more rather than less differentiated as the malignancy progresses. To test the hypothesis that ovarian surface epithelial cells retain properties of relatively uncommitted pluripotent cells until undergoing neoplastic transformation, we conducted gene expression profiling analysis (Affymetrix, U133 Plus 2.0) of 12 ovarian surface epithelial cells and 12 laser capture microdissected serous papillary ovarian cances. We find that over 2000 genes are significantly differentially expressed between the surface epithelial and cancer samples. Network analysis implicates key signaling pathways and pathway interactions in ovarian cancer development. Genes previously associated with adult stem cell maintenance are expressed in ovarian surface epithelial cells and significantly down-regulated in ovarian cancer cells. Our results indicate that the surface of the ovary is an adult stem cell niche and that deregulation of genes involved in maintaining the quiescence of ovarian surface epithelial cells is instrumental in the initiation and development of ovarian cancer.

Publication Title

Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE7463
Expression data from 43 Ovarian tumors
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Gene expression profiles of malignant carcinomas surgically removed from ovarian cancer patients pre-treated with chemotherapy (neo-adjuvant) prior to surgery group into two distinct clusters. One group clusters with carcinomas from patients not pre-treated with chemotherapy prior to surgery (C-L) while the other clusters with non-malignant adenomas (A-L).

Publication Title

Evidence that p53-mediated cell-cycle-arrest inhibits chemotherapeutic treatment of ovarian carcinomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40352
The effects of NAC on gene expression in Nkx3.1-/- mouse prostate
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We tested the effects of the antioxidant NAC (N-Acetyl-Cysteine) on gene expression in Nkx3.1-deficient mouse prostate.

Publication Title

Antioxidant treatment promotes prostate epithelial proliferation in Nkx3.1 mutant mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE23845
Time course for bladder UCC development in UPII-SV40Tag mice
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We have identified genes that are differentially expressed between the bladders of UPII-SV40Tag mice and their age-matched wild-type littermates at 3, 6, 20, and 30 weeks of age. These are ages that correspond to premalignant, carcinoma in situ, and early-stage and later stage invasive UCC, respectively

Publication Title

Identification of genes correlated with early-stage bladder cancer progression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71620
The effects of aging on circadian patterns of gene expression in the human prefrontal cortex
  • organism-icon Homo sapiens
  • sample-icon 419 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

With aging, significant changes in circadian rhythms occur, including a shift in phase toward a morning chronotype and a loss of rhythmicity in circulating hormones. However, the effects of aging on molecular rhythms in the human brain have remained elusive. Here we employed a previously-described time-of-death analyses to identify transcripts throughout the genome that have a significant circadian rhythm in expression in the human prefrontal cortex (Brodmanns areas (BA) 11 and 47). Expression levels were determined by microarray analysis in 146 individuals. Rhythmicity in expression was found in ~10% of detected transcripts (p<0.05). Using a meta-analysis across the two brain areas, we identified a core set of 235 genes (q<0.05) with significant circadian rhythms of expression. These 235 genes showed 92% concordance in the phase of expression between the two areas. In addition to the canonical core circadian genes, a number of other genes were found to exhibit rhythmic expression in the brain. Notably, we identified more than one thousand genes (1186 in BA11; 1591 in BA47) that exhibited age-dependent rhythmicity or alterations in rhythmicity patterns with aging. Interestingly, a set of transcripts gained rhythmicity in older individuals, which may represent a compensatory mechanism due to a loss of canonical clock function. Thus, we confirm that rhythmic gene expression can be reliably measured in human brain and identified for the first time significant changes in molecular rhythms with aging that may contribute to altered cognition, sleep and mood in later life.

Publication Title

Effects of aging on circadian patterns of gene expression in the human prefrontal cortex.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
accession-icon GSE11722
Irinotecan-induced gene expression changes in the rat intestine
  • organism-icon Rattus norvegicus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The regional specificity and timing of gene activation following chemotherapy, and how this relates to subsequent mucositis development is currently unknown. The aim of the study was therefore to determine the early time course of gene expression changes along the gastrointestinal tract (GIT) of the DA rat following irinotecan treatment, so as to provide an insight into the genetic component of mucositis.

Publication Title

Gene expression analysis of multiple gastrointestinal regions reveals activation of common cell regulatory pathways following cytotoxic chemotherapy.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE21655
Human iPSCs derived under feeder free conditions displays an unqiue cell cycle and DNA replication genotype
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Induced pluripotent stem cells (iPSCs) have been generated from various somatic cells under feeder-layer conditions. These feeder-derived iPSCs generated in different labs exhibit greater variability than between different traditional embryo derived hESC lines. For that reason, it is important to develop a standard and defined system for deriving autologous patient stem cells. We have generated iPSCs under feeder-free conditions using Matrigel coated vessels in chemically defined medium, mTeSR1. These feeder-free derived iPSCs are in many ways similar to feeder-derived iPSCs and also to hESCs, with respect to their pluripotent gene expression (OCT4, NANOG, SOX2), protein expression (OCT4, NANOG, SSEA4, TRA160) and differentiation capabilities.

Publication Title

Human induced pluripotent stem cells derived under feeder-free conditions display unique cell cycle and DNA replication gene profiles.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP028282
Inhibition of Androgen Receptor and ß-catenin activity in prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Androgen receptor (AR) is the major therapeutic target in aggressive prostate cancer. However, targeting AR alone can result in drug resistance and disease recurrence. Therefore, simultaneous targeting of multiple pathways could in principle be an effective new approach to treating prostate cancer. Here we provide proof-of-concept that a small molecule inhibitor of nuclear ß-catenin activity (called C3) can inhibit both the AR and ß-catenin signaling pathways that are often misregulated in prostate cancer. Treatment with C3 ablated prostate cancer cell growth by disruption of both ß-catenin/TCF and ß-catenin/AR protein interaction, reflecting the fact that TCF and AR have overlapping binding sites on ß-catenin. Given that AR interacts with, and is transcriptionally regulated by ß-catenin, C3 treatment also resulted in decreased occupancy of ß-catenin on the AR promoter and diminished AR and AR/ß-catenin target gene expression. Interestingly, C3 treatment resulted in decreased AR binding to target genes accompanied by decreased recruitment of an AR and ß-catenin cofactor, CARM1, providing new insight into the unrecognized function of ß-catenin in prostate cancer. Importantly, C3 inhibited tumor growth in an in vivo xenograft model, and blocked renewal of bicalutamide-resistant sphere forming cells, indicating the therapeutic potential of this approach. Overall design: Compare and contrast the expression profile of prostate cancer cells treated with a Wnt inhibitor (C3) with respect to ß-catenin and AR knockdown (all samples in duplicates).

Publication Title

Inhibition of androgen receptor and β-catenin activity in prostate cancer.

Sample Metadata Fields

Disease, Subject

View Samples
accession-icon GSE73781
Genome-wide Ribbon occupancy and gene expression profiling of wildtype and ribbon mutant Drosophila mid through late stage embryos
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Ribbon regulates morphogenesis of the Drosophila embryonic salivary gland through transcriptional activation and repression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43881
HIPK2 and MED19 are new regulators of androgen receptor in prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The androgen receptor (AR) is a mediator of both androgen-dependent and castration- resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. We identified 45 AR-regulators, which include known pathway components and genes with functions not previously linked to AR regulation, such as HIPK2 (a protein kinase) and MED19 (a subunit of the Mediator complex). Depletion of HIPK2 and MED19 in human prostate cancer cells decreased AR target gene expression and, importantly, reduced the proliferation of androgen-dependent and castration-resistant prostate cancer cells. We also systematically analyzed additional Mediator subunits and uncovered a small subset of Mediator subunits that interpret AR signaling and affect AR-dependent transcription and prostate cancer cell proliferation. Importantly, targeting of HIPK2 by an FDA approved kinase inhibitor phenocopied the effect of depletion by RNAi and reduced the growth of AR-positive, but not AR negative, treatment-resistant prostate cancer cells. Thus, our screen has yielded new AR regulators including drugable targets that reduce the proliferation of castration-resistant prostate cancer cells.

Publication Title

A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact