The FinHER trial is a multicentre phase 3 randomised adjuvant breast cancer trial that enrolled 1010 patients. The women were randomly assigned to receive three cycles of docetaxel or vinorelbine, followed by three cycles of fluorouracil, epirubicin, and cyclophosphamide.
Integrative proteomic and gene expression analysis identify potential biomarkers for adjuvant trastuzumab resistance: analysis from the Fin-her phase III randomized trial.
Age, Disease stage
View SamplesThere is a continuing need for driver strains to enable cell type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (http://enhnacertrap.bio.brandeis.edu). Overall design: Examination of 6 cortical mouse neuronal cell types. 5 of which are in layer 6 in 3 different cortical regions.
A Mammalian enhancer trap resource for discovering and manipulating neuronal cell types.
Sex, Cell line, Subject
View SamplesTranscriptome analysis comparing naive, protective and non-protective spleen memory CD8 T lymphocytes were conducted to identify key functions associated with memory CD8-mediated immune protection. Memory CD8 T cells generated in response to influenza or vaccinia infection (Flu-memory and VV-memory) were compared to inflammatory memory cells (TIM) that were generated by peptide in inflammatory context. Gene expression analysis was performed on quiescent and re-stimulated CD8 T cells.
Immune signatures of protective spleen memory CD8 T cells.
Specimen part
View SamplesWe investigate the contribution of IRE1 signaling to the modulation of U87 glioma cells transcriptome upon various stresses. To this end, IRE1 control and IRE1 dominant negative expressing U87 glioma cells were subjected to environmental or chemical challenges and their transcriptome monitored using Affymetrix microarrays.
Posttranscriptional regulation of PER1 underlies the oncogenic function of IREα.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Feasibility of developing reliable gene expression modules from FFPE derived RNA profiled on Affymetrix arrays.
Specimen part
View SamplesThe reliability of differential expression analysis on FFPE expression profiles from Affymetrix arrays is questionable, due to the wide range of percent-present values reported in studies which profiled FFPE samples on Affymetrix arrays. Moreover the validity of externally defined gene-modules in FFPE microarray expression profiles is unknown. Using eight breast cancer tumors with available frozen and FFPE samples, five sample-matched data sets were generated from different combination of Affymetrix arrays, amplification-and-labeling kit and sample preservation method. The reliability of differential expression analysis was investigated by developing de novo ER/HER2 pathway gene-modules from matched data sets and validating it on external data set using ROC analysis. Spearman's rank correlation coefficient of module scores between matched FFPE-frozen expression profiles was used to measure reliability of externally defined gene-modules in FFPE expression profiles. Independent of array/amplification-kit/sample preservation method used, de novo ER/HER2 gene-modules derived from all matching data sets showed similar prediction performance during independent validation (AUC range; ER: 0.92-0.95, HER2: 0.88-0.91), except for de novo HER2 gene-module derived from FFPE data set with 3'IVT kit (AUC: 0.67-0.72). Further not all gene-module based biological signals present in frozen expression profiles can be recovered from matching FFPE microarray expression profiles using the currently available FFPE specific sample preparation kits. The gene-module based biological signal extracted from FFPE RNA, using microarrays, may not be as reliable as that from their frozen counterpart, if the sample preparation protocol used with FFPE RNA failed to recover relevant genes involved in the biological signal.
Feasibility of developing reliable gene expression modules from FFPE derived RNA profiled on Affymetrix arrays.
Specimen part
View SamplesThe reliability of differential expression analysis on FFPE expression profiles from Affymetrix arrays is questionable, due to the wide range of percent-present values reported in studies which profiled FFPE samples on Affymetrix arrays. Moreover the validity of externally defined gene-modules in FFPE microarray expression profiles is unknown. Using eight breast cancer tumors with available frozen and FFPE samples, five sample-matched data sets were generated from different combination of Affymetrix arrays, amplification-and-labeling kit and sample preservation method. The reliability of differential expression analysis was investigated by developing de novo ER/HER2 pathway gene-modules from matched data sets and validating it on external data set using ROC analysis. Spearman's rank correlation coefficient of module scores between matched FFPE-frozen expression profiles was used to measure reliability of externally defined gene-modules in FFPE expression profiles. Independent of array/amplification-kit/sample preservation method used, de novo ER/HER2 gene-modules derived from all matching data sets showed similar prediction performance during independent validation (AUC range; ER: 0.92-0.95, HER2: 0.88-0.91), except for de novo HER2 gene-module derived from FFPE data set with 3'IVT kit (AUC: 0.67-0.72). Further not all gene-module based biological signals present in frozen expression profiles can be recovered from matching FFPE microarray expression profiles using the currently available FFPE specific sample preparation kits. The gene-module based biological signal extracted from FFPE RNA, using microarrays, may not be as reliable as that from their frozen counterpart, if the sample preparation protocol used with FFPE RNA failed to recover relevant genes involved in the biological signal.
Feasibility of developing reliable gene expression modules from FFPE derived RNA profiled on Affymetrix arrays.
Specimen part
View SamplesThe reliability of differential expression analysis on FFPE expression profiles from Affymetrix arrays is questionable, due to the wide range of percent-present values reported in studies which profiled FFPE samples on Affymetrix arrays. Moreover the validity of externally defined gene-modules in FFPE microarray expression profiles is unknown. Using eight breast cancer tumors with available frozen and FFPE samples, five sample-matched data sets were generated from different combination of Affymetrix arrays, amplification-and-labeling kit and sample preservation method. The reliability of differential expression analysis was investigated by developing de novo ER/HER2 pathway gene-modules from matched data sets and validating it on external data set using ROC analysis. Spearman's rank correlation coefficient of module scores between matched FFPE-frozen expression profiles was used to measure reliability of externally defined gene-modules in FFPE expression profiles. Independent of array/amplification-kit/sample preservation method used, de novo ER/HER2 gene-modules derived from all matching data sets showed similar prediction performance during independent validation (AUC range; ER: 0.92-0.95, HER2: 0.88-0.91), except for de novo HER2 gene-module derived from FFPE data set with 3'IVT kit (AUC: 0.67-0.72). Further not all gene-module based biological signals present in frozen expression profiles can be recovered from matching FFPE microarray expression profiles using the currently available FFPE specific sample preparation kits. The gene-module based biological signal extracted from FFPE RNA, using microarrays, may not be as reliable as that from their frozen counterpart, if the sample preparation protocol used with FFPE RNA failed to recover relevant genes involved in the biological signal.
Feasibility of developing reliable gene expression modules from FFPE derived RNA profiled on Affymetrix arrays.
Specimen part
View SamplesThe reliability of differential expression analysis on FFPE expression profiles from Affymetrix arrays is questionable, due to the wide range of percent-present values reported in studies which profiled FFPE samples on Affymetrix arrays. Moreover the validity of externally defined gene-modules in FFPE microarray expression profiles is unknown. Using eight breast cancer tumors with available frozen and FFPE samples, five sample-matched data sets were generated from different combination of Affymetrix arrays, amplification-and-labeling kit and sample preservation method. The reliability of differential expression analysis was investigated by developing de novo ER/HER2 pathway gene-modules from matched data sets and validating it on external data set using ROC analysis. Spearman's rank correlation coefficient of module scores between matched FFPE-frozen expression profiles was used to measure reliability of externally defined gene-modules in FFPE expression profiles. Independent of array/amplification-kit/sample preservation method used, de novo ER/HER2 gene-modules derived from all matching data sets showed similar prediction performance during independent validation (AUC range; ER: 0.92-0.95, HER2: 0.88-0.91), except for de novo HER2 gene-module derived from FFPE data set with 3'IVT kit (AUC: 0.67-0.72). Further not all gene-module based biological signals present in frozen expression profiles can be recovered from matching FFPE microarray expression profiles using the currently available FFPE specific sample preparation kits. The gene-module based biological signal extracted from FFPE RNA, using microarrays, may not be as reliable as that from their frozen counterpart, if the sample preparation protocol used with FFPE RNA failed to recover relevant genes involved in the biological signal.
Feasibility of developing reliable gene expression modules from FFPE derived RNA profiled on Affymetrix arrays.
Specimen part
View SamplesThe reliability of differential expression analysis on FFPE expression profiles from Affymetrix arrays is questionable, due to the wide range of percent-present values reported in studies which profiled FFPE samples on Affymetrix arrays. Moreover the validity of externally defined gene-modules in FFPE microarray expression profiles is unknown. Using eight breast cancer tumors with available frozen and FFPE samples, five sample-matched data sets were generated from different combination of Affymetrix arrays, amplification-and-labeling kit and sample preservation method. The reliability of differential expression analysis was investigated by developing de novo ER/HER2 pathway gene-modules from matched data sets and validating it on external data set using ROC analysis. Spearman's rank correlation coefficient of module scores between matched FFPE-frozen expression profiles was used to measure reliability of externally defined gene-modules in FFPE expression profiles. Independent of array/amplification-kit/sample preservation method used, de novo ER/HER2 gene-modules derived from all matching data sets showed similar prediction performance during independent validation (AUC range; ER: 0.92-0.95, HER2: 0.88-0.91), except for de novo HER2 gene-module derived from FFPE data set with 3'IVT kit (AUC: 0.67-0.72). Further not all gene-module based biological signals present in frozen expression profiles can be recovered from matching FFPE microarray expression profiles using the currently available FFPE specific sample preparation kits. The gene-module based biological signal extracted from FFPE RNA, using microarrays, may not be as reliable as that from their frozen counterpart, if the sample preparation protocol used with FFPE RNA failed to recover relevant genes involved in the biological signal.
Feasibility of developing reliable gene expression modules from FFPE derived RNA profiled on Affymetrix arrays.
Specimen part
View Samples