The effect of dietary calcium and dairy proteins on adipose tissue gene expression profile in diet induced obesity
Effect of dietary calcium and dairy proteins on the adipose tissue gene expression profile in diet-induced obesity.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Coexpression of normally incompatible developmental pathways in retinoblastoma genesis.
Specimen part
View SamplesIt is widely believed that the molecular and cellular features of a tumor reflect its cell-of-origin and can thus provide clues about treatment targets. The retinoblastoma cell-of-origin has been debated for over a century. Here we report that human and mouse retinoblastomas have molecular, cellular, and neurochemical features of multiple cell classes, principally amacrine/horizontal interneurons, retinal progenitor cells, and photoreceptors. Importantly, single-cell gene expression array analysis showed that these multiple cell typespecific developmental programs are coexpressed in individual retinoblastoma cells, which creates a progenitor/neuronal hybrid cell. Importantly, neurotransmitter receptors, transporters, and biosynthetic enzymes are expressed in human retinoblastoma, and targeted disruption of these pathways reduces retinoblastoma growth in vivo and in vitro. Our finding that retinoblastoma tumor cells express multiple neuronal differentiation programs that are normally incompatible in development suggests that the pathways that control retinal development and establish distinct cell types are perturbed during tumorigenesis. Therefore, the cell-of-origin for retinoblastoma cannot be inferred from the features of the tumor cells themselves. However, we now have a detailed understanding of the neuronal pathways that are deregulated in retinoblastoma and targeting the catecholamine and indolamine receptors or downstream components could provide useful therapeutic approaches in future studies. This example highlights the importance of comprehensive molecular, cellular and physiological characterization of human cancers with single cell resolution as we incorporate molecular targeted therapy into treatment regimens.
Coexpression of normally incompatible developmental pathways in retinoblastoma genesis.
No sample metadata fields
View SamplesIt is widely believed that the molecular and cellular features of a tumor reflect its cell-of-origin and can thus provide clues about treatment targets. The retinoblastoma cell-of-origin has been debated for over a century. Here we report that human and mouse retinoblastomas have molecular, cellular, and neurochemical features of multiple cell classes, principally amacrine/horizontal interneurons, retinal progenitor cells, and photoreceptors. Importantly, single-cell gene expression array analysis showed that these multiple cell typespecific developmental programs are coexpressed in individual retinoblastoma cells, which creates a progenitor/neuronal hybrid cell. Importantly, neurotransmitter receptors, transporters, and biosynthetic enzymes are expressed in human retinoblastoma, and targeted disruption of these pathways reduces retinoblastoma growth in vivo and in vitro. Our finding that retinoblastoma tumor cells express multiple neuronal differentiation programs that are normally incompatible in development suggests that the pathways that control retinal development and establish distinct cell types are perturbed during tumorigenesis. Therefore, the cell-of-origin for retinoblastoma cannot be inferred from the features of the tumor cells themselves. However, we now have a detailed understanding of the neuronal pathways that are deregulated in retinoblastoma and targeting the catecholamine and indolamine receptors or downstream components could provide useful therapeutic approaches in future studies. This example highlights the importance of comprehensive molecular, cellular and physiological characterization of human cancers with single cell resolution as we incorporate molecular targeted therapy into treatment regimens.
Coexpression of normally incompatible developmental pathways in retinoblastoma genesis.
Specimen part
View SamplesIt is widely believed that the molecular and cellular features of a tumor reflect its cell-of-origin and can thus provide clues about treatment targets. The retinoblastoma cell-of-origin has been debated for over a century. Here we report that human and mouse retinoblastomas have molecular, cellular, and neurochemical features of multiple cell classes, principally amacrine/horizontal interneurons, retinal progenitor cells, and photoreceptors. Importantly, single-cell gene expression array analysis showed that these multiple cell typespecific developmental programs are coexpressed in individual retinoblastoma cells, which creates a progenitor/neuronal hybrid cell. Importantly, neurotransmitter receptors, transporters, and biosynthetic enzymes are expressed in human retinoblastoma, and targeted disruption of these pathways reduces retinoblastoma growth in vivo and in vitro. Our finding that retinoblastoma tumor cells express multiple neuronal differentiation programs that are normally incompatible in development suggests that the pathways that control retinal development and establish distinct cell types are perturbed during tumorigenesis. Therefore, the cell-of-origin for retinoblastoma cannot be inferred from the features of the tumor cells themselves. However, we now have a detailed understanding of the neuronal pathways that are deregulated in retinoblastoma and targeting the catecholamine and indolamine receptors or downstream components could provide useful therapeutic approaches in future studies. This example highlights the importance of comprehensive molecular, cellular and physiological characterization of human cancers with single cell resolution as we incorporate molecular targeted therapy into treatment regimens.
Coexpression of normally incompatible developmental pathways in retinoblastoma genesis.
Specimen part
View SamplesHuman Umbilical Vein Endothelial Cells were treated with three newly synthesized compounds and DMSO as vehicle. Total RNA was isolated 6 and 24h after treatment and gene expression analysis was performed. Three independent experiments were performed, corresponding to rep1, rep2 and rep3. Experiment 1 (rep1) contained all substances at both time points tested. Experiment 2 (rep2) contained two of the compounds and control DMSO at both time points. Experiment 3 (rep3) contained the third compound and control DMSO at both time points.
Novel pyrazolopyridine derivatives as potential angiogenesis inhibitors: Synthesis, biological evaluation and transcriptome-based mechanistic analysis.
Specimen part, Time
View SamplesControversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance
Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion.
Specimen part
View SamplesWe advance a three gene model of arsenate tolerance in rice based on testing root growth of 108 recombinant inbred lines (RILs) of the Bala x Azucena population. Marker genotype at 3 loci determined arsenate tolerance in 99% of RILs tested. Interestingly, plants must inherit 2, but any two alleles from the tolerant parent (Bala) to have the tolerant phenotype. Challenging the Affymetrix GeneChip Rice Genome array with Azucena and Bala RNA isolated from control and arsenate treated plants revealed 592 genes 2 fold-upregulated by arsenate and 696 downregulated. The array data was also used to identify which genes are expressed within the three target loci.
Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis.
No sample metadata fields
View SamplesLong non-coding RNAs (lncRNAs) are expressed in a highly tissue-specific manner where they function in various aspects of cell biology, often as key regulators of gene expression. In this study we established a role for lncRNAs in chondrocyte differentiation. Using RNA sequencing we identified a human articular chondrocyte repertoire of lncRNAs from normal hip cartilage donated by neck of femur fracture patients. Of particular interest are lncRNAs upstream of the master chondrocyte transcription factor SOX9 locus. SOX9 is an HMG-box transcription factor which is essential for chondrocyte development by directing the expression of chondrocyte specific genes. Two of these lncRNAs are upregulated during chondrogenic differentiation of MSCs. Depletion of one of these lncRNA, LOC102723505, which we termed ROCR (regulator of chondrogenesis RNA), by RNAi disrupted MSC chondrogenesis, concomitant with reduced cartilage-specific gene expression and incomplete matrix component production, indicating an important role in chondrocyte biology. Specifically, SOX9 induction was significantly ablated in the absence of ROCR, and overexpression of SOX9 rescued the differentiation of MSCs into chondrocytes. Our work sheds further light on chondrocyte specific SOX9 expression and highlights a novel method of chondrocyte gene regulation involving a lncRNA. Overall design: Human neck of femure fracture hip cartilage chondrocyte mRNA profile generated by RNA-seq
Expression analysis of the osteoarthritis genetic susceptibility mapping to the matrix Gla protein gene MGP.
Sex, Age, Specimen part, Subject
View SamplesThe Wnt signaling pathway is deregulated in over 90% of human colorectal cancers. Catenin, the central signal transducer of the Wnt pathway, can directly modulate gene expression by interacting with transcription factors of the TCF/LEF-family. In the present study we investigate the role of Wnt signaling in the homeostasis of intestinal epithelium using tissue-specific, inducible beta-catenin gene ablation in adult mice. Block of Wnt/beta-catenin signaling resulted in rapid loss of transient-amplifying cells and crypt structures. Importantly, intestinal stem cells were induced to terminally differentiate upon deletion of beta-catenin resulting in a complete block of intestinal homeostasis and fatal loss of intestinal function. Transcriptional profiling of mutant crypt mRNA isolated by laser capture micro dissection confirmed those observations and allowed to identify genes potentially responsible for the functional preservation of intestinal stem cells.
Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells.
No sample metadata fields
View Samples