Natural killer (NK) cells are innate lymphocytes that possess features of adaptive immunity, such as the ability to recognize specific antigen, among others. In MCMV infection, the engagement of a subset of NK cells expressing an activating receptor Ly49H with MCMV-derived glycoprotein m157 results in a clonal-like expansion and the generation of a small pool of long-lived memory cells with higher Ly49H expression than the naive Ly49H-expressing NK cell pool. In this study, we interrogate the transcriptional differences between NK cells that express high verus low levels of Ly49H early after infection. Overall design: RNASeq was performed on Ly49Hhi and Ly49Hlow NK cells harvested after 1.5 days post in vivo infection; 4 replicates per group and 50,000 cells per replicate.
Cytomegalovirus Infection Drives Avidity Selection of Natural Killer Cells.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer.
Specimen part, Treatment
View SamplesPAX8-PPARG fusion protein (PPFP) results from a t(2;3)(q13;p25) chromosomal translocation, is found in 30% of follicular thyroid carcinomas, and demonstrates oncogenic capacity in transgenic mice. A PPARG ligand, pioglitazone, is highly therapeutic in mice with PPFP thyroid carcinoma. We used our previously characterized transgenic mouse model of PPFP thyroid carcinoma to identify PPFP binding sites in vivo using ChIP-seq, and to identify genes and pathways regulated by PPFP with and without pioglitazone treatment via integration with RNA-seq and Affymetrix microarray data. This submission contains the Affymetrix microarray data. PPFP and pioglitazone regulated genes involved in lipid and fatty acid metabolism, ribosome function, immune processes, cell death and other cancer-related processes. The RNA-seq data yielded similar findings.
Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer.
Specimen part, Treatment
View SamplesLong noncoding RNAs (lncRNAs) are emerging as powerful regulators of adipocyte differentiation and gene expression. However, their physiological role in adipose tissue biology and systemic energy metabolism has not been established. Here we show that adipose tissue expression of Blnc1, a conserved lncRNA regulator of thermogenic genes, is highly induced in obese mice. Fat-specific inactivation of Blnc1 impairs cold-induced thermogenesis and browning, exacerbates obesity-associated brown fat whitening, and worsens adipose tissue inflammation and fibrosis, leading to more severe insulin resistance and hepatic steatosis. On the contrary, transgenic expression of Blnc1 in adipose tissue elicits the opposite and beneficial metabolic effects, supporting a critical role of Blnc1 in driving adipose adaptation during obesity. Mechanistically, Blnc1 cell-autonomously attenuates proinflammatory cytokine signaling and promotes fuel storage in adipocytes through its protein partner Zbtb7b. This study illustrates a surprisingly pleiotropic and dominant role of lncRNA in driving adaptive adipose tissue remodeling and preserving metabolic health.
The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health.
Sex, Age, Specimen part, Treatment
View SamplesProximal spinal muscular atrophy (SMA) is an early onset, autosomal recessive motor neuron disease caused by loss of or mutation in SMN1 (survival motor neuron 1). Despite understanding the genetic basis underlying this disease, it is still not known why motor neurons (MNs) are selectively affected by the loss of the ubiquitously expressed SMN protein. Using a mouse embryonic stem cell (mESC) model for severe SMA, the RNA transcript profiles (transcriptomes) between control and severe SMA (SMN2+/+;mSmn-/-) mESC-derived MNs were compared in this study using massively parallel RNA sequencing (RNA-Seq). The MN differentiation efficiencies between control and severe SMA mESCs were similar. RNA-Seq analysis identified 3094 upregulated and 6964 downregulated transcripts in SMA mESC-derived MNs when compared against control cells. Pathway and network analysis of the differentially expressed RNA transcripts showed that pluripotency and cell proliferation transcripts were significantly increased in SMA MNs while transcripts related to neuronal development and activity were reduced. The differential expression of selected transcripts such as Crabp1, Crabp2 and Nkx2.2 was validated in a second mESC model for SMA as well as in the spinal cords of low copy SMN2 severe SMA mice. Furthermore, the levels of these selected transcripts were restored in high copy SMN2 rescue mouse spinal cords when compared against low copy SMN2 severe SMA mice. These findings suggest that SMN deficiency affects processes critical for normal development and maintenance of MNs. Overall design: RNA profiles were generated from FACS-purified control and SMA mESC-derived motor neurons (n=3/genotype) by deep sequencing using Illumina HighSeq 2500
Transcriptome profiling of spinal muscular atrophy motor neurons derived from mouse embryonic stem cells.
No sample metadata fields
View SamplesDifferentiation of human pluripotent stem cells toward definitive endoderm (DE) is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA-sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. We further show that differentiation-arrested phenotype is inversely correlated with zinc concentration in the differentiation media. This study improves our understanding of in-vitro DE differentiation and provides actionable options to improve DE differentiation efficiency. Overall design: RNA-sequencing of 329 single cells collected at four time points during a 4-day DE differentiation to identify mechanisms leading to cellular heterogeneity during differentiation
Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm.
Specimen part, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene expression in the ventral tegmental area of 5 pairs of rat lines selectively bred for high or low ethanol consumption.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer.
Sex, Disease, Disease stage, Treatment
View SamplesThe objective of this study was to determine common innate differences in gene expression in the nucleus accumbens shell among the selectively bred (a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats: (b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (both replicates); (c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats; and (d) Sardinian alcohol-preferring (sP) vs. alcohol-nonpreferring (sNP) rats.
Gene expression in the ventral tegmental area of 5 pairs of rat lines selectively bred for high or low ethanol consumption.
No sample metadata fields
View SamplesThe objective of this study was to determine common innate differences in gene expression in the ventral tegmental area (VTA) among the selectively bred (a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats: (b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (both replicates); (c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats; and (d) Sardinian alcohol-preferring (sP) vs. alcohol-nonpreferring (sNP) rats. There were between 350 and 1400 unique named genes that were significantly different between the individual line-pairs. Gene Ontology (GO) and Ingenuity Pathways analyses indicated significant categories and networks in common for up to 3 line-pairs, but not for all 5 line-pairs; there were few genes in common between any of the line-pairs in these categories and networks. The overall ANOVAs of the combined data for the 5 line-pairs indicated over 1300 significant differences in expression of named genes. Ingenuity analysis revealed (a) several significant networks with clusters of genes associated with App, Egfr, Ccnd1, Itga2b, Rxra and Vcl; and (b) changes in genes within networks associated with dopamine, the glutamate synapse, Nfkb signaling, IL pathways and integrin. There were 22 genes that were significantly different in the overall ANOVA and were significantly different (in the direction) in at least 3 line-pairs, e.g., Crebl2, Gsta4, Itga9 & Itg2. In conclusion, the findings suggest that (a) different innate mechanisms may be contributing to vulnerability to high alcohol drinking behavior among the selectively bred lines, and (b) small contributions in expression of multiple genes within certain transmitter systems and intracellular signaling pathways may contribute to the disparate alcohol drinking characteristics of the 5 line-pairs.
Gene expression in the ventral tegmental area of 5 pairs of rat lines selectively bred for high or low ethanol consumption.
No sample metadata fields
View Samples