NHEK cells were plated at a density of 8 x 10 000/cm2 and the cell cultures were grown for 24 hours before addition of 2 mM N-Acetyl-L-Cystein. RNA obtained from cultures grown for 1, 12 and 24 hrs after NAC treatment were compared to RNA from untreated cells at the corresponding time points. I.e 1 hour NAC treated vs 1 hour untreated cells etc. Each EXTRACT represents an individual mRNA extraction and subsequent cDNA synthesis from a batch of totalRNA originating from one cellculture dish.
Global gene expression analysis in time series following N-acetyl L-cysteine induced epithelial differentiation of human normal and cancer cells in vitro.
Specimen part, Subject, Compound, Time
View SamplesCaco-2 human colon carcinoma cells were seeded at a density of 9 x 10 000 cells/cm2 and the cell cultures were grown for 24 hours before addition of 10 mM N-Acetyl-L-Cystein. RNA obtained from cultures grown for 1, 12 and 24 hrs after NAC treatment were compared to RNA from untreated cells at the corresponding time points. I.e 1 hour NAC treated vs 1 hour untreated cells etc. Each "SAMPLE" represents a biological replicate (i.e. separate cellcultures treated similarily) although I have given identical SAMPLE numbers in pairs.
Global gene expression analysis in time series following N-acetyl L-cysteine induced epithelial differentiation of human normal and cancer cells in vitro.
Specimen part, Cell line, Subject, Compound, Time
View SamplesWe extracted RNA from whole cells and RNA from the cytoplasm and performed RNA sequening to compare differences in gene expression level and investigate what is the most appropriate estimate of the amount of mRNA present in a given cell population. The study was based on three human cell lines. Overall design: Analyze of transcriptome in 3 human cell lines (U-2 OS, A-431, U-251MG). Each cell line was prepared with four biological replicates for total RNA and four for cytoplasmic RNA.
Comparison of total and cytoplasmic mRNA reveals global regulation by nuclear retention and miRNAs.
No sample metadata fields
View SamplesThe aim of the dataset was to study on genome-wide level the effect of Notch inhibition in gene expression on neural crest differentiation of human embryonic stem cells under chemically defined conditions.
Notch signaling regulates the differentiation of neural crest from human pluripotent stem cells.
Specimen part
View SamplesAim: RNA binding proteins (RBPs) are emerging as critical regulators of gut homeostasis via post-transcriptional control of key growth and repair pathways. IMP1 (IGF2 mRNA Binding Protein 1) is ubiquitously expressed during embryonic development and Imp1 hypomorphic mice exhibit severe gut growth defects. In the present study, we investigated the mechanistic contribution of intestinal epithelial IMP1 to gut homeostasis and response to injury. Method: We evaluated IMP1 expression in patients with Crohn's disease followed by unbiased ribosome profiling in IMP1 knockout cells. Concurrently, we measured differences in histology and cytokine expression in mice with intestinal epithelial-specific Imp1 deletion (Imp1?IEC) following dextran sodium sulfate (DSS)- colitis. Based on ribosome profiling analysis, we evaluated changes in autophagy in Imp1?IEC mice as well as in silico and in vitro approaches to evaluate direct protein:RNA interactions. Finally, we analyzed the consequence of genetic deletion of Atg7 in Imp1?IEC mice using colitis and irradiation models. Results: IMP1 was robustly upregulated in Crohn's disease patients and Imp1 loss lessened DSS-colitis severity. Unbiased ribosome-profiling revealed that IMP1 may coordinate translation of multiple pathways important for intestinal homeostasis, including cell cycle and autophagy, which we verified by Western blotting. Mechanistically, we observed evidence for increased autophagy flux in Imp1?IEC mice, reinforced through in silico and biochemical analyses revealing direct binding of IMP1 to autophagy transcripts. Finally, we found genetic deletion of Atg7 reversed the phenotype observed in DSS- or irradiation-challenged Imp1?IEC mice. Conclusions: IMP1 acts as a post-transcriptional regulator of gut epithelial repair, in part through modulation of autophagy. This study highlights the need for examining post-transcriptional regulation as a critical mechanism in inflammatory bowel disease. Overall design: Ribosome-footprinting and RNA-seq samples from WT SW480 cells and IMP1-/- knockout cells
Posttranscriptional regulation of colonic epithelial repair by RNA binding protein IMP1/IGF2BP1.
Specimen part, Cell line, Subject
View SamplesForkhead box class O (FoxO) transcription factors regulate whole body energy metabolism, skeletal muscle mass and substrate switching. To elucidate the role of FOXO in skeletal muscle, dominant negative (dn) constructs for FOXO1 (FOXO1dn) or FOXO3 (FOXO3dn) were transfected by electroporation into mouse tibialis anterior muscle and glucose uptake, signal transduction, and glucose stimulated gene expression profiles were assessed. Results were compared against contralateral control transfected muscle.
Regulation of glucose uptake and inflammation markers by FOXO1 and FOXO3 in skeletal muscle.
Sex, Age, Specimen part
View SamplesThe amount of RNA sequencing data on skeletal muscle is very limited. We have analyzed a large set of human muscle biopsy samples and provide extensive information on the baseline skeletal muscle transcriptome, including completely novel protein-coding transcripts. Overall design: Analyze of transcriptome in 23 skeletal muscle biopsy samples from six individuals. Four biopsies from each subject, two biopsies from each leg (except subject 6 which has only three biopsies in total).
The human skeletal muscle transcriptome: sex differences, alternative splicing, and tissue homogeneity assessed with RNA sequencing.
No sample metadata fields
View SamplesmRNA, sncRNA and lncRNA show a clear difference in expression between proliferative phase and 7–9 days after ovulation, thorough described together with lncRNA, snoRNA and snRNA not previously reported in healthy human endometrium Overall design: 7 small RNA and 7 total RNA samples sequenced from endmometrial tissue from two time points of the menstrual cycle. Gene expression from the two time points compared. Additionally 12 small RNA from stromal cells was sequenced.
Comprehensive RNA sequencing of healthy human endometrium at two time points of the menstrual cycle.
No sample metadata fields
View SamplesA subpopulation of pericytes expressing the Glast-CreERT2 transgene (Type A pericytes) has recently been identified as the main source of stromal scar tissue that forms after SCI. Identification of molecules associated with pericyte-derived scarring may offer new therapeutic targets to facilitate axon regeneration following central nervous system (CNS) injury. We conducted genome-wide RNA sequencing of (i) uninjured spinal cord segments and (ii) lesion sites presenting full or attenuated pericyte-derived scarring 14 days after SCI. Overall design: Adult Glast-Rasless-YFP (Glast-CreERT2 x R26R-YFP x Rasless) mice receiving vehicle (Veh) or tamoxifen (Tam) underwent dorsal hemisection at high thoracic level. Fourteen days after SCI, injury sites were dissected out, homogenized and total RNA was isolated from lesions presenting (i) dense (Veh, n=4) and (ii) attenuated (Tam, n=4) pericyte-derived scarring. Age-matched Glast-Rasless-YFP mice served as uninjured controls (n=4).
Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury.
Specimen part, Treatment, Subject, Time
View SamplesAlthough the locations of promoters and enhancers have been identified in several cell types, we have yet limited information on their connectivity. We developed HiCap, which combines Hi-C with promoter sequence capture, to enable genome-wide identification of regulatory interactions with single-enhancer resolution. HiCap analyses of mouse embryonic stem cells (mESC) identified promoter-enhancer interactions predictive of gene expression change upon perturbation, opening up for genomic analyses of long-range gene regulation. Overall design: HiCap was designed by combining Hi-C with with sequence capture (for all promoters) and carried out in mouse embryonic stem cells (mESC)
Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution.
No sample metadata fields
View Samples