refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 837 results
Sort by

Filters

Technology

Platform

accession-icon GSE32912
Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Mitochondria are able to modulate cell state and fate during normal and pathophysiologic conditions through a nuclear mediated mechanism collectively termed as a retrograde response. Our previous studies in Drosophila have clearly established that progress through the cell cycle is precisely regulated by the intrinsic activity of the mitochondrion by specific signaling cascades mounted by the cell. As a means to further our understanding of how mitochondrial energy status affects nuclear control of basic cell decisions we have employed Affymetrix microarray-based transcriptional profiling of Drosophila S2 cells knocked down for the gene encoding subunit Va of the complex IV of the mitochondrial electron transport chain. The profiling data identifies up-regulation of glycolytic genes and metabolic studies confirm this increase in glycolysis. The transcriptional portrait which emerges implicates many signaling systems, including a p53 response, an insulin response, and up-regulation of conserved mitochondrial responses. This rich dataset provides many novel targets for further understanding the mechanism whereby the mitochondrion may direct cellular fate decisions. The data also provides a salient model of the shift of metabolism from a predominately oxidative state towards a predominately aerobic glycolytic state, and therefore provides a model of energy substrate management not unlike that found in cancer.

Publication Title

Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE27127
Exon-array profiling of Heat-shock stress response in HeLa cell line
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

The heat-shock stress response was studied at the level of exons using Affymetrix Exon-array profiling for both sense and anti-sense transcripts. Sense transcript profiling was done as per the protocol of Affymetrix Exon 1.0 ST array and anti-sense transcript array profiling was done using a modified protocol (Xijin Ge et al., BMC Genomics. 2008 Jan 22;9:27).

Publication Title

Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE26776
Transcriptome-wide changes in HeLa cell line investigated in response to Heat-shock stress
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

The repertoire of transcripts that are differentially regulated in response to Heat-shock were studied using Illumina WG-6 v2.0 BeadChip.

Publication Title

Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE61049
Nervous system developmental genes are altered in fetal hippocampus by ethanol.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Prenatal alcohol exposure can cause long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations found in FASD.

Publication Title

Ethanol-related alterations in gene expression patterns in the developing murine hippocampus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15248
Biocompatibility and Discovery of the Potential Applications of Magnetite (Fe3O4) Nanoparticles
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

A Transcriptomics Approach to Study the Biocompatibility and Finding out the Potential Applications of Magnetite (Fe3O4) Nanoparticles

Publication Title

Magnetite (Fe3O4) nanocrystals affect the expression of genes involved in the TGF-beta signalling pathway.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE23583
Highly efficient reprogramming to pluripotency and directed differentiation using synthetic mRNA
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Clinical application of induced pluripotent stem (iPS) cells is limited by low efficiency of iPS derivation, and protocols that permanently modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPS cells towards clinically useful cell types are lacking. Here we describe a simple, non-mutagenic strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate anti-viral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem (RiPS) cells into terminally differentiated myogenic cells. Our method represents a safe, efficient strategy for somatic cell reprogramming and directing cell fates that has broad applicability for basic research, disease modeling and regenerative medicine.

Publication Title

Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP144388
CD47 expression in natural killer cell regulates homeostasis and modulates immune response to lymphocytic choriomeningitis virus
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

CD47 is a ubiquitous cell surface receptor that limits cell clearance by phagocytes that express its counter-receptor signal-regulatory protein-a and directly regulates T cell immunity by interacting with its inhibitory ligand thrombospondin-1. Murine natural killer (NK) cells express higher levels of CD47 than other lymphocytes, but the role of CD47 in regulating NK cell homeostasis and immune function remains unclear. Cd47-/- mice exhibited depletion of NK precursors in bone marrow, but antisense Cd47 knockdown or gene disruption resulted in a dose dependent accumulation of immature and mature NK cells in spleen. Cd47-/- mice were impaired in controlling chronic Clone-13 lymphocytic choriomeningitis virus (LCMV) infection, which was associated with depletion of splenic NK cells and loss of effector cytokine and interferon response gene expression in Cd47-/- NK cells. These data identify CD47 as a cell-intrinsic and systemic regulator of NK cell homeostasis and NK cell responses to viral infection. Overall design: Examining natural killer (NK) cell intrinsic role of CD47 during viral infection.

Publication Title

CD47 Expression in Natural Killer Cells Regulates Homeostasis and Modulates Immune Response to Lymphocytic Choriomeningitis Virus.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE26973
G3P triggered changes in systemic transcriptome
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Goal of this study was to determine changes in transcription profile in mock versus G3P treated plants. Arabidopsis (Col-0 ecotype) plants were infiltrated with petiole exudate, with or without G3P, and distal leaves were sampled 24 h post treatments.

Publication Title

Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67522
Genome-wide analysis of gene expression to identify the probably functionally relevant pathways in cervical cancer progression
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Identification of genes and pathways relevant to Cervical cancer pathogenesis. The study also aimed at identifying probable mechanistic differences in the low and high HOTAIR expressing cervical cancers patients .

Publication Title

Bridging Links between Long Noncoding RNA HOTAIR and HPV Oncoprotein E7 in Cervical Cancer Pathogenesis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE109583
Epidermal fatty acid binding protein prevents chemical-induced skin tumorigenesis by inhibition of SOX2 expression in keratinocytes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

E-FABP expression in keratinocytes increase interferons, in particualur IFNlamda, expression, which activate P53, a critical tumor suppessor, to inhibit or prevent chemical-induced skin tumorigenesis.

Publication Title

Epidermal FABP Prevents Chemical-Induced Skin Tumorigenesis by Regulation of TPA-Induced IFN/p53/SOX2 Pathway in Keratinocytes.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact