The objective is to identify genes that are differentially expressed following the introduction of DNA double strand breaks (DSBs) by the Rag proteins in murine pre-B cells. Cells lacking Artemis are used since the Rag-induced DSBs will not be repaired and, thus, will provide a continuous stimulus to the cell. Cells lacking Artemis and Atm are used to determine which gene expression changes depend on Atm and cells lacking Artemis that express an I kappa B alpha dominant negative are used to determine which gene expression changes depend on NFkB.
DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes.
No sample metadata fields
View SamplesMutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of familial and sporadic Parkinsons disease (PD). Here, we investigated in parallel gene and microRNA transcriptome profiles of three different LRRK2 mouse models. Striatal tissue was isolated from adult LRRK2 knockout mice, as well as mice expressinghuman LRRK2 wildtype (hLRRK2-WT) or PD-associated R1441G mutation (hLRRK2-R1441G).
Gene and MicroRNA transcriptome analysis of Parkinson's related LRRK2 mouse models.
Age, Specimen part
View SamplesWe use mice containing a gene trap in the first intron of the Rest gene, which effectively eliminates transcription from all coding exons, to prematurely remove REST from neural progenitors. We find catastrophic DNA damage that occurs during S-phase of the cell cycle and concominant with activation of p53 pro-apoptotic sgnalling, with consequences including abnormal chromosome separation, apoptosis, and smaller brains.
The REST remodeling complex protects genomic integrity during embryonic neurogenesis.
Specimen part
View SamplesWe use mice containing a gene trap in the first intron of the Rest gene, which effectively eliminates transcription from all coding exons, to prematurely remove REST from neural progenitors. We find catastrophic DNA damage that occurs during S-phase of the cell cycle, with consequences including abnormal chromosome separation, apoptosis, and smaller brains. Further support for persistent effects is the latent appearance of proneural glioblastomas in adult mice also lacking the tumor suppressor, p53. A Rest deficient mouse line generated previously, using a conventional gene targeting approach, does not exhibit these phenotypes, likely due to a remaining C terminal peptide that still binds chromatin and recruits REST chromatin modifiers.Our results indicate that REST-mediated chromatin remodeling is required for proper S-phase dynamics, prior to its well-established role in relieving repression of neuronal genes at terminal differentiation.
The REST remodeling complex protects genomic integrity during embryonic neurogenesis.
Specimen part
View SamplesMicroglia are key regulators of inflammatory response after stroke and brain injury. Here we profiled the microglia transcriptome isolated from a spontaneously hypertensive rat model of focal cerebral ischemia.
Transcriptomic characterization of microglia activation in a rat model of ischemic stroke.
Sex, Age
View SamplesOcular immune privilege (IP) limits immune surveillance of intraocular tumors as certain immunogenic tumor cell lines (P815, E.G7-OVA) that are rejected when transplanted in the skin grow progressively when placed in the anterior chamber (a.c.) of the eye. As splenectomy (SPLNX) is known to terminate ocular IP, we characterized immune mechanisms responsible for spontaneous rejection of intraocular tumors in SPLNX mice as a first step toward identifying how to restore tumoricidal activity within the eye. Microarray data showed a 3-fold increase in interferon (IFN)- and a 2.7-fold increase in Fas ligand (FasL). There was a robust increase in transcripts (127 of 408 surveyed) from interferon (IFN)-stimulated genes and a marked decrease (in 40 of 192 surveyed) in the expression of cell-cycle-associated genes. Non-microarray data confirmed that IFN, FasL and CD8+ T cells but not perforin or TNF were required for elimination of intraocular E.G7-OVA tumors that culminated in destruction of the eye (ocular phthsis). IFN and FasL did not target tumor cells directly as the majority of SPLNX IFNR1-/- mice and Fas-defective lpr mice failed to eliminate ocular E.G7-OVA tumors that expressed Fas and IFNR1. Bone marrow chimeras showed that immune cell expression of IFNR1 and Fas was critical and that SPLNX increased the frequency of activated macrophages within ocular tumors in an IFN- and Fas/FasL-dependent manner. Rejection of intraocular tumors was associated with increased ocular mRNA expression of several inflammatory genes including FasL, NOS2, CXCL2 and T-bet. Our data support a model in which IFN- and Fas/FasL-dependent activation of intratumoral macrophage by CD8+ T cells promotes severe intraocular inflammation that indirectly eliminates intraocular tumors by inducing phthisis. The immunosuppressive mechanisms which maintain ocular IP likely interfere with the interaction between CD8+ T cells and macrophage to limit immunosurveillance of intraocular tumors.
Splenectomy promotes indirect elimination of intraocular tumors by CD8+ T cells that is associated with IFNγ- and Fas/FasL-dependent activation of intratumoral macrophages.
Specimen part, Treatment
View SamplesNGS was used in order to discover novel downstream targets of the miR-17-92/106b clusters. Overall design: Comperasion of gene expression from miR-17-92/106b KO and control
miR-17-92 and miR-106b-25 clusters regulate beta cell mitotic checkpoint and insulin secretion in mice.
Specimen part, Cell line, Subject
View Samplesp63 mutations have been associated with several human hereditary disorders characterized by ectodermal dysplasia such as EEC syndrome, ADULT syndrome and AEC syndrome . The location and functional effects of the mutations that underlie these syndromes reveal a striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations in the SAM domain of p63. We report a study on the TAp63a isoform, the first to be expressed during development of the embryonic epithelia, and on its naturally occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L mutation, we generated stable cell lines expressing TAp63a wt, DeltaNp63 alpha or the TAp63 alpha-Q540L mutant protein and used them to systematically compare the cell growth regulatory activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a comprehensive profile of differential gene expression. We found that the Q540L substitution impairs the transcriptional activity of TAp63a and causes misregulation of genes involved in the control of cell growth and epidermal differentiation.
The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene-expression signature of vascular invasion in hepatocellular carcinoma.
Sex, Age, Specimen part
View SamplesNeurons in the arcuate nucleus (ARC) sense the fed/fasted state and regulate hunger. ARCAgRP neurons release GABA, NPY and the melanocortin-4 receptor (MC4R) antagonist, AgRP, and are activated by fasting1-4. When stimulated, they rapidly and potently drive hunger5,6. ARCPOMC neurons, in contrast, release the MC4R agonist, a-MSH, and are viewed as the counterpoint to ARCAgRP neurons. They are regulated in an opposite fashion and their activity leads to decreased hunger2,4,7. Together, ARCAgRP and ARCPOMC neurons constitute the ARC feeding center. Against this, however, is the finding that ARCPOMC neurons, unlike ARCAgRP neurons, fail to affect food intake over the timescale of minutes to hours following opto- or chemogenetic stimulation5,8. This suggests a rapidly acting component of the ARC satiety pathway is missing. Here, we show that excitatory ARC neurons identified by expression of vesicular glutamate transporter 2 (VGLUT2) and the oxytocin receptor, unlike ARCPOMC neurons, rapidly cause satiety when chemo- or optogenetically manipulated. These glutamatergic ARC projections synaptically converge with GABAergic ARCAgRP projections on MC4R-expressing neurons in the paraventricular hypothalamus (PVHMC4R neurons), which are known to mediate satiety9. ARCPOMC neurons also send dense projections to the PVH. Importantly, the a-MSH they release post-synaptically potentiates glutamatergic synaptic activity onto PVHMC4R neurons – including that emanating from ARCVglut2 neurons. This suggests a means by which a-MSH can bring about satiety – via postsynaptic potentiation of this novel ARCVglut2 to PVHMC4R satiety circuit. Thus, while fast (GABA and NPY) and slow (AgRP) ARC hunger signals are delivered together by ARCAgRP neurons10,11, the temporally analogous satiety signals from the ARC, glutamate and a-MSH, are delivered separately by two parallel, interacting projections (from ARCVGLUT2 and ARCPOMC neurons). Discovery of this rapidly acting excitatory ARC ? PVH satiety circuit, and its regulation by a-MSH, provides new insight into regulation of hunger/satiety. Overall design: 23 samples representing single neurons dissociated from the arcuate hypothalamus of two young adult male vGLUT2-IRES-Cre mice
A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH.
Specimen part, Cell line, Subject
View Samples