Development is a complex and well-defined process characterized by rapid cell proliferation and apoptosis. At this stage in life, a developmentally young organism is more sensitive to toxicants and other stressors when compared to an adult. In response to pro-oxidant exposure, members of the Cap’n’Collar (CNC) basic leucine zipper (b-ZIP) transcription factor family (including the Nfe2-related factors, Nrfs) activate the expression of genes that contribute to reduced toxicity. Here, we studied the role of the Nrf protein, Nfe2, in the developmental response to pro-oxidant exposure in the zebrafish. Following acute waterborne exposures to diquat or tert-buytlhydroperoxide (tBOOH) at three developmental stages, wildtype (WT) and nfe2 knockout (KO) embryos and larvae were morphologically scored and their transcriptomes sequenced. Overall design: Wildtype animals were on the AB background and an additional germline nfe2 knockout strain were created by disruption of the nfe2 reading frame. Waterborne exposures to either diquat or tBOOH were carried out at three different developmental stages: 2 hours post fertilization (hpf), 48hpf, and 96hpf in 3 pools of 30 embryos per condition. Animals were exposed to no treatment, 20µM diquat or 1mM tBOOH for a 4-hour dosing period. Total RNA was isolated from pooled animals and 50 bp, paired end, libraries were sequenced using the Illumina HiSeq 2000 platform, with approximately 25 million reads per sample. Reads were then aligned to the Ensembl GRCz10 zebrafish reference genome using Tophat2 and raw counts data normalized using DESeq2. Gene annotation was from Ensemble for GRCz10.
The transcription factor, Nuclear factor, erythroid 2 (Nfe2), is a regulator of the oxidative stress response during Danio rerio development.
No sample metadata fields
View SamplesThe purpose of our study was to identify expression signatures and molecular markers associated with tumor recurrence and survival in patients with locally advanced head and neck squamous cell carcinoma (HNSCC).
Gene expression signatures and molecular markers associated with clinical outcome in locally advanced head and neck carcinoma.
Sex, Specimen part
View SamplesCaryopses of barley (Hordeum vulgare), like all other cereal seeds, are complex sink organs optimized for storage starch accumulation and embryo development. Their development from early stages after pollination to late stages of seed ripening has been studied in great detail. However, information on the caryopses diurnal adaptation to changes in light, temperature and alterations in phloem-supplied carbon and nitrogen remained unknown.
Significance of light, sugar, and amino acid supply for diurnal gene regulation in developing barley caryopses.
Age, Specimen part
View SamplesHigh temperature stress, like any abiotic stress, impairs the physiology and development of plants, including the stages of seed setting and ripening.
Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Foxp3-dependent programme of regulatory T-cell differentiation.
Sex
View SamplesThis data set is comprised of all peripheral (pooled lymph nodes and spleen) T cell subsets presented in this manuscript. These include T-N, T-25, T-FN and T-R cells; T-25, T-FN and T-R cells from mice treated with IL-2; and T-R cells transduced with empty, PDE3B-expressing or PDE3B(H801A)-expressing retroviral vectors (after transfer into recipient mice).
Foxp3-dependent programme of regulatory T-cell differentiation.
Sex
View SamplesThis data set is comprised of all thymic T cell subsets presented in this manuscript. These include T-N, T-25, T-FN and T-R thymocytes.
Foxp3-dependent programme of regulatory T-cell differentiation.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock.
Specimen part
View SamplesRNA polymerase III (pol III) synthesizes short non-coding RNAs, many of which, including tRNAs, Rpph1 RNA, Rn5s rRNA, and Rmrp RNA, are essential for translation. Accordingly, pol III activity is tightly regulated with cell growth and proliferation by factors such as MYC, RB1, TRP53, and MAF1. MAF1 is a repressor of pol III transcription whose activity is controlled by phosphorylation; in particular, it is inactivated through phosphorylation by mTORC1 kinase, a sensor of nutrient availability. Pol III regulation is thus sensitive to environmental cues, yet a diurnal profile of pol III transcription activity is so far lacking. Here we document pol III occupancy of its target genes in mouse liver during the diurnal cycle and show that pol III occupancy rises before the onset of the night, stays high during the night, when mice normally ingest food and when translation is increased, and decreases in daytime. By comparing diurnal pol III occupancy in wild-type mice, arrhythmic mice owing to inactivation of the Arntl gene, mice fed at regular intervals during both night and day, and mice lacking the Maf1 gene, we show that whereas higher pol III occupancy during the night reflects a MAF1-dependent response to feeding, the rise of pol III occupancy before the onset of the night reflects a circadian clock-dependent response. Thus, pol III transcription during the diurnal cycle is regulated both in response to nutrients and by the circadian clock, which allows anticipatory pol III transcription.
Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock.
Specimen part
View SamplesThe Arabidopsis thaliana transcription factor LATERAL ORGAN BOUNDARIES (LOB) is expressed in the boundary between the shoot apical meristem and initiating lateral organs. To identify genes regulated by LOB activity, we used an inducible 35S:LOB-GR line. This analysis identified genes that are differentially expressed in response to ectopic LOB activity.
Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries.
Age, Specimen part, Treatment
View Samples