Physical exercise training is a known protective factor against cardiovascular morbidity and mortality. Nevertheless, the underlying specific molecular mechanisms still remain uncompletely explored. To identify molecular mechanisms by which exercise training induces this favorable phenotype a genomic approach was used in an animal model of mild exercise previously demonstrated by our group to induce cardioprotection.
Gene expression profile of rat left ventricles reveals persisting changes following chronic mild exercise protocol: implications for cardioprotection.
No sample metadata fields
View SamplesBACKGROUND: Many age-associated disorders (including diabetes, cancer, and neurodegenerative diseases) are linked to mitochondrial dysfunction, which leads to impaired cellular bioenergetics and increased oxidative stress. However, it is not known what genetic and molecular pathways underlie differential vulnerability to mitochondrial dysfunction observed among different cell types.
Molecular basis for vulnerability to mitochondrial and oxidative stress in a neuroendocrine CRI-G1 cell line.
Cell line
View SamplesOur data demonstrate that overexpression of the polarity protein Crb3 elicits changes in MCF-10A cells that culminate in an increase in the release of amphiregulin (AR) and the subsequent activation of EGFR signaling to drive proliferation. Microarray analysis was performed to define global changes in the transcriptional landscape induced by Crb3. Results provide insight into a FERM domain protein (EBP41L4B) required for Crb3 mediated induction of proliferation.
CRB3 and the FERM protein EPB41L4B regulate proliferation of mammary epithelial cells through the release of amphiregulin.
Cell line, Treatment
View SamplesThe aim of this experiment was to investigate differential gene expression in splenocytes stimulated with BCG from nave and BCG vaccinated mice. The differences between nave and BCG vaccinated mice might indicate the mechanisms by which BCG vaccination confers an enhanced ability of splenocytes from BCG vaccinated mice to inhibit growth of BCG in splenocyte cultures as compared with splenocytes from naive animals.
Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb).
Sex, Age, Specimen part
View SamplesPhenotypes representative of normal, transformed and experimentally manipulated human B cells related to the germinal center structure.
Reverse engineering of regulatory networks in human B cells.
Specimen part
View SamplesChIP-on-chip has emerged as a powerful tool to dissect the complex network of regulatory interactions between transcription factors and their targets. However, most ChIP-on-chip analysis methods use conservative approaches aimed to minimize false-positive transcription factor targets. We present a model with improved sensitivity in detecting binding events from ChIP-on-chip data. Its application to human T-cells, followed by extensive biochemical validation, reveals that three transcription factor oncogenes, NOTCH1, MYC, and HES1, bind to several thousands target gene promoters, up to an order of magnitude increase over conventional analysis methods. Gene expression profiling upon NOTCH1 inhibition shows broad-scale functional regulation across the entire range of predicted target genes, establishing a closer link between occupancy and regulation. Finally, the increased sensitivity reveals a combinatorial regulatory program in which MYC co-binds to virtually all NOTCH1-bound promoters. Overall, these results suggest an unappreciated complexity of transcriptional regulatory networks and highlight the fundamental importance of genome-scale analysis to represent transcriptional programs.
ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes.
No sample metadata fields
View SamplesTransient expression of two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference.
Transcriptional signature and memory retention of human-induced pluripotent stem cells.
Sex, Specimen part
View SamplesHuman medulloblastoma (MB) can be segregated into four major categories based on gene expression patterns: Hedgehog (HH) subtype, Wnt subtype, Group 3, and Group 4. However, they all exhibit strikingly different gene expression profiles from Atypical Teratoid/Rhabdoid Tumor (AT/RT). We re-analyzed published gene expression microarray dataset of pediatric brain tumors to identify a gene expression profile that clearly distinguished human AT/RT from human MB. We used this profile, choosing only genes that have clear murine orthologs, to compare tumors from Snf5F/Fp53L/LGFAP-Cre mice (in C57Bl/6 strain background) with MB from Ptc1+/- mice (in mixed C57Bl/6 and 129Sv strain background). Snf5F/Fp53L/LGFAP-Cre tumors are clearly very different from mouse MB and the markers that distinguish human AT/RT from human MB also distinguish the mouse tumors.
Generation of a mouse model of atypical teratoid/rhabdoid tumor of the central nervous system through combined deletion of Snf5 and p53.
No sample metadata fields
View SamplesFour vehicle-treated and four HhAntag-treated pancreatic xenograft tumors were profiled for gene expression changes using Affymetrix U133 Plus 2.0 and Affymetrix Mouse Genome 430 2.0 arrays.
A paracrine requirement for hedgehog signalling in cancer.
No sample metadata fields
View SamplesDesign: Persistent latently infected CD4+ T cells represent a major obstacle to HIV eradication. Histone deacetylase inhibitors (HDACis) are a promising activation therapy in a shock and kill strategy. However, off-target effects of HDACis on host gene expression are poorly understood in primary cells of the immune system. We hypothesized that HDACi-modulated genes would be best identified with a dose response analysis. Methods: Resting primary CD4+ T cells were treated with increasing concentrations (0.34, 1, 3, or 10 M) of the HDACi, suberoylanilide hydroxamic acid (SAHA), for 24 hours and then subjected to microarray gene expression analysis. Genes with dose-correlated expression were identified with a likelihood ratio test using Isogene GX and a subset of these genes with a consistent trend of up or downregulation at each dose of SAHA were identified as dose-responsive. Histone modifications were characterized in promoter regions of the top 6 SAHA dose-responsive genes by RT-qPCR analysis of immunopreciptated chromatin (ChIP). Results: A large number of genes were shown to be up (N=657) or down (N=725) regulated by SAHA in a dose-responsive manner (FDR p-value < 0.05 and fold change |2|). Several of these genes (CTNNAL1, DPEP2, H1F0, IRGM, PHF15, and SELL) are potential in vivo biomarkers of SAHA activity. SAHA dose-responsive gene categories included transcription factors, HIV restriction factors, histone methyltransferases, and host proteins that interact with HIV proteins or the HIV LTR. Pathway analysis suggested net downregulation of T cell activation with increasing SAHA dose. Histone acetylation was not correlated with host expression, but plausible alternative mechanisms for SAHA-modulated expression were identified. Conclusions: Numerous host genes in CD4+ T cells are modulated by SAHA in a dose-responsive manner, including genes that may negatively influence HIV activation from latency. Our study suggests that SAHA influences gene expression through a confluence of several mechanisms, including histone acetylation, histone methylation, and altered expression and activity of transcription factors.
Dose-responsive gene expression in suberoylanilide hydroxamic acid-treated resting CD4+ T cells.
Specimen part, Subject
View Samples