The effect of HMGN1 protein on gene expression of mouse ESC, NP and Neurons were investigated by comparing the transcriptome between Hmgn1+/+ and Hmgn1 -/- cells.
HMGN1 modulates nucleosome occupancy and DNase I hypersensitivity at the CpG island promoters of embryonic stem cells.
Specimen part
View SamplesNOD mice are an inbred strain that display enhanced MZ B cell differentiation from an early age. Interestingly, several lines of evidence implicate MZ B cells in this strain as important contributors to the T cell mediated beta cell destruction associated with the development of type 1 diabetes (T1D). In order to develop a better understanding of the underlying causes for augmented MZ B cell production in NOD mice, we obtained the transcriptional profiles of FO and MZ subsets and TR precursors from NOD mice and compared them to those of the B6 strain.
Intrinsic molecular factors cause aberrant expansion of the splenic marginal zone B cell population in nonobese diabetic mice.
Sex, Age, Specimen part
View SamplesPeripherally derived macrophages infiltrate the brain after bone marrow transplantation and during central nervous system (CNS) inflammation. It was initially suggested that these engrafting cells were newly derived microglia and that irradiation was essential for engraftment to occur. However, it remains unclear whether brain-engrafting macrophages (beMfs) acquire a unique phenotype in the brain, whether long-term engraftment may occur without irradiation, and whether brain function is affected by the engrafted cells. In this study, we demonstrate that chronic, partial microglia depletion is sufficient for beMfs to populate the niche and that the presence of beMfs does not alter behavior. Furthermore, beMfs maintain a unique functional and transcriptional identity as compared with microglia. Overall, this study establishes beMfs as a unique CNS cell type and demonstrates that therapeutic engraftment of beMfs may be possible with irradiation-free conditioning regimens. Overall design: Microglia were isolated from the brains of adult male c57BL/6 mice given bone marrow tranplants (BMT) with or without head shield. All mice received PLX5622 for 2 weeks, then placed and normal chow to recoever. Some mice were then challenged with LPS. Cells were isolated by MACS using CD11b magnetic beads.
Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesThis dataset describe the transcriptomic profiling of cecum, stomach and ileum from wild type, cdx2 conditional knock out and cdx2 ; apc deficient mice, by mRNA-seq. Each condition was analyzed in triplicated experiment to analyze the role of cdx2 in colorectal cancer susceptibilities Overall design: Biological samples from dissected tissue were tested by RNASeq in triplicates resulting into a total of 24 samples.
The Cdx2 homeobox gene suppresses intestinal tumorigenesis through non-cell-autonomous mechanisms.
Specimen part, Treatment, Subject
View SamplesPeripherally derived macrophages infiltrate the brain after bone marrow transplantation and during central nervous system (CNS) inflammation. It was initially suggested that these engrafting cells were newly derived microglia and that irradiation was essential for engraftment to occur. However, it remains unclear whether brain-engrafting macrophages (beMfs) acquire a unique phenotype in the brain, whether long-term engraftment may occur without irradiation, and whether brain function is affected by the engrafted cells. In this study, we demonstrate that chronic, partial microglia depletion is sufficient for beMfs to populate the niche and that the presence of beMfs does not alter behavior. Furthermore, beMfs maintain a unique functional and transcriptional identity as compared with microglia. Overall, this study establishes beMfs as a unique CNS cell type and demonstrates that therapeutic engraftment of beMfs may be possible with irradiation-free conditioning regimens. Overall design: Mice were given 1000rad whole body irradiation, followed by bone marrow transplant with UBC-GFP bone marrow at 8 weeks of age. Engraftment was allowed to occur for 8 months, then engrafting macrophages and microglia were isolated from whole brains for RNA-Seq.
Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia.
Age, Specimen part, Cell line, Subject
View SamplesThe aim of this experiment was to investigate differential gene expression in splenocytes stimulated with BCG from nave and BCG vaccinated mice. The differences between nave and BCG vaccinated mice might indicate the mechanisms by which BCG vaccination confers an enhanced ability of splenocytes from BCG vaccinated mice to inhibit growth of BCG in splenocyte cultures as compared with splenocytes from naive animals.
Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb).
Sex, Age, Specimen part
View SamplesRaw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with lactic acid at pH 3 and pH 5.
Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.
No sample metadata fields
View SamplesDietary intervention constitutes a feasible approach for modulating metabolism and improving healthspan and lifespan. Methionine restriction (MR) delays the appearance of age-related diseases and increases longevity in normal mice. However, the effect of MR on premature aging remains to be elucidated. Here, we describe that MR extends lifespan in two different mouse models of Hutchinson-Gilford progeria syndrome (HGPS) by reversing the transcriptome alterations in inflammation and DNA-damage response genes present in this condition. Further, MR improves the lipid profile and alters the levels of bile acids, both in wild-type and in progeroid mice. Notably, treatment with the bile acid cholic acid improves healthspan and lifespan in vivo. These results suggest the existence of a metabolic pathway involved in the longevity extension achieved by MR and support the possibility of dietary interventions for treating progeria.
Methionine Restriction Extends Lifespan in Progeroid Mice and Alters Lipid and Bile Acid Metabolism.
Sex, Age, Specimen part
View SamplesThe identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase paralleling the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b-/- mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. Atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohns disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b-/- mice. Taken together, these results provide additional evidence on the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that Atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency
ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis.
Sex, Age, Specimen part, Treatment
View SamplesTransient expression of two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference.
Transcriptional signature and memory retention of human-induced pluripotent stem cells.
Sex, Specimen part
View Samples