refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 2103 results
Sort by

Filters

Technology

Platform

accession-icon SRP094550
Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing
  • organism-icon Mus musculus
  • sample-icon 204 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Cortical GABAergic interneurons constitute a highly diverse population of inhibitory neurons that are key regulators of cortical microcircuit function. An important and heterogeneous group of cortical interneurons specifically expresses the serotonin receptor 3A (5-HT3AR) but how this diversity emerges during development is poorly understood. Here we use single-cell transcriptomics to identify gene expression patterns operating in Htr3a-GFP+ interneurons during early steps of cortical circuit assembly. We identify 3 main molecular types of Htr3a-GFP+ interneurons, each displaying distinct developmental dynamics of gene expression. The transcription factor Meis2 is specifically enriched in a type of Htr3a-GFP+ interneurons spatially confined to the cortical white matter. These MEIS2 expressing interneurons appear to originate from a restricted region located at the embryonic pallial-subpallial boundary. Overall, this study identifies MEIS2 as a subclass-specific marker for 5-HT3AR-containing interstitial interneurons and demonstrates that the transcriptional and anatomical parcellation of cortical interneurons is developmentally coupled. Overall design: Single cell transcriptomics of cortical interneurons FACS sorted according to GFP-Htr3a+. Acquired from mouse brains of 3 different developmental ages: E18, P2, P5

Publication Title

Transcriptomic and anatomic parcellation of 5-HT<sub>3A</sub>R expressing cortical interneuron subtypes revealed by single-cell RNA sequencing.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE1297
Incipient Alzheimer's Disease: Microarray Correlation Analyses
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

For these data, we analyzed hippocampal gene expression of nine control and 22 AD subjects of varying severity on 31 separate microarrays. We then tested the correlation of each gene's expression with MiniMental Status Examination (MMSE) and neurofibrillary tangle (NFT) scores across all 31 subjects regardless of diagnosis. These tests revealed a major transcriptional response comprising thousands of genes significantly correlated with AD markers. Several hundred of these genes were also correlated with AD markers across only control and incipient AD subjects (MMSE > 20).

Publication Title

Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE19944
MicroRNAs and gene expression profiles of rapamycin sensitive and resistant myogenic tumor cell line
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reprogramming of the microRNA transcriptome mediates resistance to rapamycin.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE19885
Gene expression data from rapamycin resistant and sensitive cell lines
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation. Inhibitors of mTOR are being evaluated as anti-tumor agents. Given the emerging role of microRNAs (miRNAs) in tumorgenesis we hypothesized that miRNAs could play important roles in the response of tumors to mTOR inhibitors. Rapamycin resistant myogenic cells developed by long-term rapamycin treatment showed extensive reprogramming of miRNAs expression, characterized by up-regulation of the mir-17~92 and related clusters and down-regulation of tumor-suppressor miRNAs. Antagonists of oncogenic miRNA families and mimics of tumor suppressor miRNAs (let-7) restored rapamycin sensitivity in resistant tumor cells. This study identified miRNAs as new downstream components of the mTOR-signaling pathway, which may determine the response of tumors to mTOR inhibitors.

Publication Title

Reprogramming of the microRNA transcriptome mediates resistance to rapamycin.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE56480
Developmental stage specificity of transcriptional, biochemical and CO2 efflux responses of leaf dark respiration to growth of Arabidopsis thaliana at elevated [CO2]
  • organism-icon Arabidopsis thaliana
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plant respiration responses to elevated growth [CO2] are key uncertainties in predicting future crop and ecosystem function. In particular, the effects of elevated growth [CO2] on respiration over leaf development are poorly understood. This study tested the prediction that, due to greater whole-plant photoassimilate availability and growth, elevated [CO2] induces transcriptional reprogramming and a stimulation of nighttime respiration in leaf primordia, expanding leaves, and mature leaves of Arabidopsis thaliana. In primordia, elevated [CO2] altered transcript abundance, but not for genes encoding respiratory proteins. In expanding leaves, elevated [CO2] induced greater glucose content and transcript abundance for some respiratory genes, but did not alter respiratory CO2 efflux. In mature leaves, elevated [CO2] led to greater glucose, sucrose and starch content, plus greater transcript abundance for many components of the respiratory pathway, and greater respiratory CO2 efflux. Therefore, growth at elevated [CO2] stimulated dark respiration only after leaves transitioned from carbon sinks into carbon sources. This coincided with greater photoassimilate production by mature leaves under elevated [CO2] and peak respiratory transcriptional responses. It remains to be determined if biochemical and transcriptional responses to elevated [CO2] in primordial and expanding leaves are essential prerequisites for subsequent alterations of respiratory metabolism in mature leaves.

Publication Title

Developmental stage specificity of transcriptional, biochemical and CO2 efflux responses of leaf dark respiration to growth of Arabidopsis thaliana at elevated [CO2].

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48459
Sarcoptes scabiei Mites Modulate Gene Expression In Human Skin Equivalents
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents that changed expression in response to the burrowing of live scabies mites.

Publication Title

Sarcoptes scabiei mites modulate gene expression in human skin equivalents.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE50966
Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.
  • organism-icon Arabidopsis thaliana
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.

Publication Title

Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE89846
Master Regulators of oncogenic KRAS response in Pancreatic Cancer
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

We derived a transcriptional signature of oncogenic KRAS by using the KF508 murine pancreatic ductal cell line with an inducible Lox-Stop-Lox (LSL) cassette in front of the KRASG12D oncogene to regulate transcription. This dataset allowed us to study the differential expression profile after oncogenic KRAS induction in mouse.

Publication Title

Master Regulators of Oncogenic KRAS Response in Pancreatic Cancer: An Integrative Network Biology Analysis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE58351
Gene expression in intestinal stem cells
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Genetic Manipulation to increase number of ISC (intestinal stem cells) and gene expression profiling to identify ISC regulators

Publication Title

Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in Drosophila.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE42090
The innate and adaptive immune response to BCG stimulation in splenocytes taken from C57BL/6 mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

The aim of this experiment was to investigate differential gene expression in splenocytes stimulated with BCG from nave and BCG vaccinated mice. The differences between nave and BCG vaccinated mice might indicate the mechanisms by which BCG vaccination confers an enhanced ability of splenocytes from BCG vaccinated mice to inhibit growth of BCG in splenocyte cultures as compared with splenocytes from naive animals.

Publication Title

Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb).

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact