The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement, which may lead to beneficial effects in a stressed human gut mucosa. Ten healthy volunteers participated in four different intervention periods: 7-day oral intake of either L. plantarum WCFS1, CIP48 (CIP104448), TIFN101 (CIP104450) or placebo, proceeded by a 4 weeks wash-out period. Lactulose-rhamnose ratio (an indicator of small intestinal permeability) increased after intake of indomethacin, which was given as an artificial stressor of the gut mucosal barrier (mean ratio 0.060.04 to 0.100.06, p=0.001), but was not significantly affected by the bacterial interventions. However, gene transcription pathway analysis in small intestinal biopsies, obtained by gastroduodenoscopy, demonstrated that particularly L. plantarum TIFN101 modulated cell-cell adhesion with high turnover of genes involved in tight- and adhesion junction protein synthesis and degradation (e.g. actinin alpha-4, metalloproteinase-2). These effects were less pronounced for L. plantarum WCFS1 and CIP104448. In conclusion, L. plantarum TIFN101 induced the most pronounced probiotic properties with specific effects on repair processes in the compromised intestine of healthy subjects.
The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial.
Sex, Specimen part, Treatment, Subject
View SamplesAn increasing amount of evidence suggests that the small intestine may play an important role in the development of metabolic diseases, such as obesity and insulin resistance. The small intestine provides the first barrier between diet and the body. As a result, dysregulation of biological processes and secretion of signal molecules from the small intestine may be of importance in the regulation and dysregulation of whole body metabolic homeostasis. Changes in gene expression of genes involved in lipid metabolism, cell cycle and immune response may contribute to the aetiology of diet-induced obesity and insulin resistance. In the current study we present a detailed investigation on the effects a chow diet, low fat diet and high fat diet on gene expression along the proximal-to-distal axis of the murine small intestine. The reported results provide a knowledge base for upcoming studies on the role of the small intestine in the aetiology of diet-induced diseases.
Cross-species comparison of genes related to nutrient sensing mechanisms expressed along the intestine.
Sex, Specimen part
View SamplesCutaneous sarcoidosis skin provides relatively non invasive access to granulomatous sarcoidosis tissue.
Molecular profiling and gene expression analysis in cutaneous sarcoidosis: the role of interleukin-12, interleukin-23, and the T-helper 17 pathway.
Subject
View SamplesWe performed RNA-Seq and compared expression levels of genes of reactivated LCMV.GP66-77 specific CD4 T cells isolated from bone marrow (BM) and spleen of LCMV.GP61-80 primed C57BL/6 mice. Cells were isolated 3 days after antigenic re-challenge Overall design: C57BL/6 mice were primed at day 0 with LCMV.GP61-80-NP-MSA + poly(I:C) and immunized again at day 14 with LCMV.GP61-80 + poly(I:C). 60 days later, C57BL/6 mice were boosted with LCMV.GP61-80-NP-MSA + poly(I:C) and 3 days after the boost, LCMV specific CD4 T cells were isolated from BM and spleen
Nonfollicular reactivation of bone marrow resident memory CD4 T cells in immune clusters of the bone marrow.
Age, Specimen part, Cell line, Subject
View SamplesWe compared gene expression profiles of Th cells, macrophages and monocytes isolated from the inflamed colon of colitis induced by the transfer of WT versus Tbx21-/- Th cells in Rag1-/- recipients.
T-bet expression by Th cells promotes type 1 inflammation but is dispensable for colitis.
Specimen part
View SamplesPulmonary alveoli are complex architectural units thought to undergo endogenous or pharmacologically induced programs of regeneration and degeneration. To study the molecular mechanism of alveoli loss mice were calorie restricted at different timepoints. Lungs were harvested and processed for RNA extraction.
Calorie-related rapid onset of alveolar loss, regeneration, and changes in mouse lung gene expression.
Time
View SamplesDespite decades of interest, the mechanisms that control Hox gene expression are not yet fully understood. It was recently proposed that Hotair, a lncRNA transcribed from the HoxC cluster, regulates HoxD gene expression via Polycomb targeting and thus is important for correct skeletal development. However, genetic manipulations of the locus led to conflicting results regarding the roles of Hotair. Here, we analyze the molecular and phenotypic consequences of deleting the Hotair locus in vivo. In contradiction with previous findings, we show that deleting Hotair has no detectable effect on HoxD gene expression in vivo. We could not observe any morphological alteration in mice lacking the Hotair locus. However, we find a significant impact of deleting Hotair on the expression of neighboring genes Hoxc11 and Hoxc12. Our results do not support an RNA-dependent role for Hotair in vivo, but argue in favor of a DNA-dependent effect of Hotair deletion on the transcriptional landscape in cis. Overall design: We micro-dissected wild type and Del(Hotair)-/- E12.5 embryos into 6 segments: forelimbs (FL), hindlimbs (HL), genital tubercle (GT), trunk section corresponding to the lumbar/sacral region (T1); trunk section corresponding to the sacral/caudal region (T2) and trunk section corresponding to the caudal region (T3). We generated strand-specific RNA-seq data for each segment, in two biological replicates and we performed differential expression analyses for each tissue. Furthermore, we analyzed the impact of deleting the Hotair locus on the local transcriptional landscape, in the HoxC cluster.
Hotair Is Dispensible for Mouse Development.
Specimen part, Cell line, Subject
View SamplesIt has been shown that dexamethasone (Dex) impairs the normal lung septation that occurs in the early postnatal period. Treatment with retinoic acid (ATRA) abrogates the effects of Dex. To understand the molecular basis for the Dex indiced inhibition of the formation of the alveoli and the ability of ATRA to prevent the inhibition of septation, gene expression was analyzed in 4-day old mice treated with diluent (control), Dex-treated and ATRA+Dex-treated.
DNA microarray analysis of neonatal mouse lung connects regulation of KDR with dexamethasone-induced inhibition of alveolar formation.
No sample metadata fields
View SamplesIn this work we have analyzed the transcriptomic profiles of E9 mouse embryos. We show that Hoxd1 and Haglr transcripts are absent after targeted deletion of the CpG: 114 island. Overall design: RNA-seq analysis of trunk from the anterior limit of the forelimb bud to the tailbud, aiming to exclude all extra-embryonic, head, cervical and heart tissues. Individuals 443 (wt) and 445 (Del(CpG114) homozygous), were siblings from the same dam, while biological replicates 456 (wt) and 455 (Del(CpG114) homozygous) were siblings from another dam.
Control of growth and gut maturation by <i>HoxD</i> genes and the associated lncRNA <i>Haglr</i>.
Specimen part, Cell line, Subject
View SamplesYeast cells were grown up in SD media containing all required amino acids. Each strain set was performed in triplicate. One set had no changes, the second set had 1mM methionine supplenting the media for the duration of growth and the third set was exposed to 0.5mM hydrogen peroxide for 15 minutes prior to harvesting
Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae.
Compound
View Samples