This SuperSeries is composed of the SubSeries listed below.
MLL rearrangements impact outcome in HOXA-deregulated T-lineage acute lymphoblastic leukemia: a Children's Oncology Group Study.
Specimen part, Disease
View SamplesThe clinical and cytogenetic features associated with T-cell acute lymphoblastic leukemia (T-ALL) are not predictive of early treatment failure or relapse. We used the Affymetrix U133 Plus 2.0 chip to profile 100 newly diagnosed patients who were treated in the Children's Oncology Group (COG) T-ALL AALL0434. We performed unsupervised hierarchical clustering of 25 HOXA probe sets within the cohort of 100 T-ALL cases. We identified a cluster of 20 cases (20%) characterized by increased expression of HOXA3, 5, 7, 9, and 10. In samples with HOXA9/10 deregulation, the presence of specific molecular lesions were confirmed through a systematic review of cytogenetic databases, FISH and PCR testing, and by RNA sequence analysis. Because MLL and AF10 genes rearrangements (MLL-R, AF10-R) are hallmarks of HOXA-deregulated leukemias, we sought to identify specific genes that are enriched with these genomic abnormalities.
MLL rearrangements impact outcome in HOXA-deregulated T-lineage acute lymphoblastic leukemia: a Children's Oncology Group Study.
Specimen part, Disease
View SamplesFK1706 potentiated nerve growth factor-induced neurite outgrowth, putatively mediated via FKBP-52 and the Ras/Raf/MAPK signaling pathway. It also improved mechanical allodynia accompanied by the recovery of intraepidermal nerve fiber density in a painful diabetic neuropathy in rats.
FK1706, a novel non-immunosuppressive immunophilin ligand, modifies gene expression in the dorsal root ganglia during painful diabetic neuropathy.
Specimen part, Treatment
View SamplesScope: As a result of population ageing, the number of Alzheimer’s disease (AD) patients has rapidly increased. There are many hypothesises on the pathogenesis of AD, but its detailed molecular mechanism is still unknown, and so no effective preventive or therapeutic measures have been established. Some reports showed a decrease in levels of norepinephrine (NE) has been suspected to be involved in the decline of cognitive function in AD patients and NE concentrations were decreased in postmortem AD patient brains. Tyr-Trp was identified as being the most effective dipeptide in enhancing norepinephrine (NE) synthesis and metabolism. And Tyr-Trp treatment ameliorated the short-term memory dysfunction in AD model mice caused by amyloid beta (Aβ) 25-35. So, the purpose of this study was to investigate the preventive or/and protective effects of Tyr-Trp administration in AD model mice.
Tyr-Trp administration facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer's disease.
Specimen part
View SamplesThe mouse anterior-posterior (A-P) axis polarization is preceded by formation of the distal visceral endoderm (DVE). However, the mechanism of the emergence of DVE cells is not well understood. Here, we show by in vitro culturing of embryos immediately after implantation in micro-fabricated cavities (narrow; 90 micro-meter, wide; 180 miro-meter in diameter) that the external mechanical cues exerted on the embryo, i.e. cultured in the narrow cavity, are crucial for DVE formation as well as elongated egg cylinder shape. This implies that these developmental events immediately after implantation are not simply embryo-autonomous processes but require extrinsic mechanical factors. Further whole genome-wide gene expression profiles with DNA microarray revealed that no significant difference of transcripts were evident with or without mechanical cues except DVE-related markers. Thus, we propose that external mechanical cues rather than not specific molecular pathways can trigger the establishment of the A-P axis polarization, which is one of the fundamental proccesses of mammalian embryogenesis.
External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos.
Specimen part, Treatment
View SamplesOvarian clear cell carcinoma (OCCC) shows unique clinical features including an association with endometriosis and poor prognosis. We previously reported that the contents of endometriotic cysts, especially high concentrations of free iron, are a possible cause of OCCC carcinogenesis through iron-induced persistent oxidative stress. In this study, we conducted gene expression microarray analysis using 38 ovarian cancer cell lines and identified genes commonly expressed in both OCCC cell lines and clinical samples, which comprise an OCCC gene signature. The OCCC signature reproducibly predicts OCCC specimens in other microarray data sets, suggesting that this gene profile reflects the inherent biological characteristics of OCCC. The OCCC signature contains known markers of OCCC, such as hepatocyte nuclear factor-1b (HNF-1b) and versican (VCAN), and other genes that reflect oxidative stress. Expression of OCCC signature genes was induced by treatment of immortalized ovarian surface epithelial cells with the contents of endometriotic cysts, indicating that the OCCC signature is largely dependent on the tumor microenvironment. Induction of OCCC signature genes is at least in part epigenetically regulated, as we found hypomethylation of HNF-1b and VCAN in OCCC cell lines. This genomewide study indicates that the tumor microenvironment induces specific gene expression profiles that contribute to the development of distinct cancer subtypes.
Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes.
Sex, Specimen part, Cell line, Treatment
View SamplesCardiomyopathy in type 1 diabetic patients is characterized by early onset diastolic and late onset systolic dysfunction. The mechanism underlying development of diastolic and systolic dysfunction in diabetes remains unknown.
Activation of a novel long-chain free fatty acid generation and export system in mitochondria of diabetic rat hearts.
Age
View SamplesDevelopmentally synchronized animals were obtained by hypochlorite treatment of gravid adults to release embryos. Synchronized embryos were hatched on NGM plates and grown at 20°C until 48 h after the L4 stage of development. Fluorodeoxyuridine was used to prevent the development of second-generation embryos once animals reached fertile adulthood. For each RNA-seq experiment, populations for odIs77[Pcol-19::UbG76V-GFP] and dop-1(vs100); [Pcol- 19::UbG76V-GFP] were grown simultaneously under the same conditions. Total RNA was isolated from animals using trizol (Invitrogen) combined with Bead Beater lysis in 3 biological replicates, and an mRNA library (single-end, 50-bp reads) was prepared for each sample/replicate using Illumina Truseq with PolyA selection. Overall design: Examination of mRNA levels in adults dop-1 mutants and wild-type animals.
Dopamine signaling promotes the xenobiotic stress response and protein homeostasis.
Specimen part, Subject
View SamplesDietary restriction extends lifespan and delays the age-related physiological decline in many species. Intermittent fasting (IF) is one of the most effective dietary restriction regimens that extends lifespan in C. elegans and mammals1,2. In C. elegans, the FOXO transcription factor DAF-16 is implicated in fasting-induced gene expression changes and the longevity response to IF3; however, the mechanisms that sense and transduce fasting-stress stimuli have remained largely unknown. Here we show that a KGB-1/AP1 (activator protein 1) module is a key signalling pathway that mediates fasting-induced transcriptional changes and IF-induced longevity. Our promoter analysis coupled to genome-wide microarray results has shown that the AP-1-binding site, together with the FOXO-binding site, is highly over-represented in the promoter regions of fasting-induced genes. We find that JUN-1 (C. elegans c-Jun) and FOS-1 (C. elegans c-Fos), which constitute the AP-1 transcription factor complex, are required for IF-induced longevity. We also find that KGB-1 acts as a direct activator of JUN-1 and FOS-1, is activated in response to fasting, and, among the three C. elegans JNKs, is specifically required for IF-induced longevity. Our results demonstrate that most fasting-induced upregulated genes, including almost all of the DAF-16-dependent genes, require KGB-1 and JUN-1 function for their induction, and that the loss of kgb-1 suppresses the fasting-induced upregulation of DAF-16 target genes without affecting fasting-induced DAF-16 nuclear translocation. These findings identify the evolutionarily conserved JNK/AP-1 module as a key mediator of fasting-stress responses, and suggest a model in which two fasting-induced signalling pathways leading to DAF-16 nuclear translocation and KGB-1/AP-1 activation, respectively, integrate in the nucleus to coordinately mediate fasting-induced transcriptional changes and IF-induced longevity.
A fasting-responsive signaling pathway that extends life span in C. elegans.
Treatment
View SamplesWe used microarrays to detail the global gene expression of primary RPE and immortalized RPE.
Identification of a Gene Encoding Slow Skeletal Muscle Troponin T as a Novel Marker for Immortalization of Retinal Pigment Epithelial Cells.
Specimen part, Cell line
View Samples