This SuperSeries is composed of the SubSeries listed below.
Genomic profiling of CHEK2*1100delC-mutated breast carcinomas.
Specimen part
View SamplesIn order to identify the gene targets of frequently altered chromosomal regions in retinoblastoma, a meta-analysis of genome-wide copy number alterations studies on primary retinoblastoma tissue and retinoblastoma cell lines was performed. Published studies were complemented by copy number and gene expression analysis on primary and cell line samples of retinoblastoma. This dataset includes the gene expression data of the retinoblastoma cell lines
A Meta-Analysis of Retinoblastoma Copy Numbers Refines the List of Possible Driver Genes Involved in Tumor Progression.
Specimen part, Cell line
View SamplesBackground
Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression.
Specimen part
View SamplesCHEK2 1100delC is a moderate-risk cancer susceptibility allele that confers a high breast cancer risk in a polygenic setting. Gene expression profiling of CHEK2 1100delC breast cancers may reveal clues to the nature of the polygenic CHEK2 model and its genes involved. Here, we report global gene expression profiles of a cohort of 155 familial breast cancers, including 26 CHEK2 1100delC mutant tumors. A 40-gene CHEK2 signature was defined that significantly associated with CHEK2 1100delC breast cancers. The identification of a CHEK2 gene signature implies an unexpected biological homogeneity among the CHEK2 1100delC breast cancers. In addition, all 26 CHEK2 1100delC tumors classified as luminal intrinsic subtype breast cancers, with 8 luminal A and 18 luminal B tumors. This biological make-up of CHEK2 1100delC breast cancers suggests that a relatively limited number of additional susceptibility alleles are involved in the polygenic CHEK2 model. Identification of these as-yet-unknown susceptibility alleles should be aided by clues from the 40-gene CHEK2 signature.
Gene expression profiling assigns CHEK2 1100delC breast cancers to the luminal intrinsic subtypes.
Specimen part
View SamplesScavenger receptors on the cell surface of macrophages play an important role in host defence through their ability to bind microbial ligands and induce phagocytosis. Concurrently, signal transduction pathways are initiated that aid in defence mechanisms against the invading microbe. Here we report on the function of scavenger receptor Marco (macrophage receptor with collagenous structure) during infection of zebrafish embryos with Mycobacterium marinum, a close relative of Mycobacterium tuberculosis. Morpholino knockdown demonstrates that Marco is required for the rapid phagocytosis of M. marinum following intravenous infection. Furthermore, gene expression analysis shows that Marco controls the initial transient pro-inflammatory response to M. marinum and remains a determining factor for the immune response signature at later stages of infection. Increased bacterial burden following marco knockdown indicates that this scavenger receptor is important for control of M. marinum growth, likely due to delayed phagocytosis and reduced pro-inflammatory signalling observed under conditions of Marco deficiency Overall design: Embryos were injected at the one cell stage with a morpholino targeting marco, or with the standard control morpholino from GeneTools for comparison. Subsequently, at 24 hours post fertilization (hpf) the morphants and their controls were manually dechorionated at 24 hpf and at 28 hpf they were infected by injecting 200 colony forming units of M. marinum Mma20 into the caudal vein, or mock-injected with PBS/2%PVP. After injections embryos were transferred into fresh egg water containing 0.003% 1-phenyl-2-thiourea (Sigma-Aldrich) to prevent melanization and incubated for 4 days at 28°C. After the incubation period, infected and uninfected morphants, mutants and their controls were imaged and groups of 30 embryos were snap-frozen in liquid nitrogen and RNA was isolated for Illumina RNAseq analysis.
Phagocytosis of mycobacteria by zebrafish macrophages is dependent on the scavenger receptor Marco, a key control factor of pro-inflammatory signalling.
No sample metadata fields
View SamplesBoth embryonic and adult zebrafish Mycobacterium marinum infection studies have contributed to our knowledge of the development and function of tuberculous granulomas, which are typical for mycobacterial pathogenesis. In this review we discuss how transcriptome profiling studies have helped to characterize this infection process and we include new RNA sequencing (RNA-Seq) data that reveals three main phases in the host response to M. marinum during the early stages of granuloma development in zebrafish embryos and larvae. The late-phase response shares common components with the strong and acute host transcriptome response that has previously been reported for S. typhimurium infection in zebrafish embryos. In contrast, the early/mid-phase response to M. marinum infection, characterized by suppressed pro-inflammatory signaling, is strikingly different from the acute response to S. typhimurium infection. Furthermore, M. marinum infection shows a collective and strongly fluctuating regulation of lipoproteins, while S. typhimurium infection has pronounced effects on amino acid metabolism and glycolysis. Overall design: Embryos were infected at 28 hpf by injecting 250 colony forming units of M. marinum Mma20 in 2%PVP into the caudal vein, or mock-injected with PBS/2%PVP. After injections, embryos were transferred into fresh egg water containing 0.003% 1-phenyl-2-thiourea (Sigma-Aldrich) to prevent melanization and incubated at 28°C. After the incubation period, infected and uninfected groups of 30 embryos were snap-frozen in liquid nitrogen and RNA was isolated for Illumina RNAseq analysis. Samples were taken at the following timepoints: 2, 4, 6, 8 hpi and 1, 2, 3, 4, 5 dpi.
Transcriptomic Approaches in the Zebrafish Model for Tuberculosis-Insights Into Host- and Pathogen-specific Determinants of the Innate Immune Response.
No sample metadata fields
View SamplesTo study differentially expressed genes in neuro-ectodermal cell lines
Downregulation of Axl in non-MYCN amplified neuroblastoma cell lines reduces migration.
Sex, Specimen part
View SamplesTranscriptional profiling revealed that murine VH11 and non-VH11 CLL differed in the upregulation of specific pathways implicated in cell signaling and metabolism. We identified a gene expression signature (including Ccdc88a, Clip3, Zcchc18, Chd3 and Itm2a) that was significantly upregulated in T cell-dependent non-VH11 CLL compared with T cell-independent VH11/Vk14 or mutated IgH.TEµ CLL. Overall design: biological replicate (n=3-4) RNA-Seq experiments Please note that the ''countTable_exons_def_norm_rpkm_all.txt'' contains the ''FPKM'' column headers (as a default output setting for the HOMER software package). However, the .txt file contains RPKM value as described in the sample data processing field.
Identification of Distinct Unmutated Chronic Lymphocytic Leukemia Subsets in Mice Based on Their T Cell Dependency.
Specimen part, Cell line, Subject
View SamplesWe use the Tlr2 mutant of zebrafish embryos model to study the transcriptome response to Mycobacterium marinum infection. We injected M.marinum into the caudal vein at 28 hours post fertilization and took samples at 4 days post infection. Overall design: This deep sequence study was designed to determine the gene expression profile in the Tlr2 mutant and heterozygote by M.marinum infection. RNA was isolated at 4 days post infection. Tlr2 mutants and heterozygotes zebrafish embryos were micro-injected into the caudal vein with 150CFU M.marinum, or PBS as a control at 28 hours post fertilization. After injections embryso were transerred into fresh egg water and incubated at 28 degree. At 4 days post infection triplicateds of 10 embryos per condition were snapfrozen in liquid nitogen, and total RNA was isolated using TRIZOL reagent.
Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection.
No sample metadata fields
View SamplesIn this study, zebrafish ZF4 and PAC2 cells were seeded in 0.5% or 1% FCS, respectively, and grown to 85% confluence and subsequently cultured for 24 hours without serum. Then they were treated with either medium without serum or medium with serum (ZF4 in 10% FCS and PAC2 in 15% FCS).After 6 hours, RNA was extracted from the cells and analyzed using the Affymetrix GeneChip Zebrafish Genome Array (GeneChip 430). There are 15502 oligonucleotide sets on each Affymetrix chip, 14895 of which can be linked to a UniGene assignment (Unigene data set 06-12-2005).
Genetic and transcriptome characterization of model zebrafish cell lines.
Cell line, Compound
View Samples