Introduction:The purpose of this study is to provide athe first global transcriptomic profiling and systems analysis of BoNT-A treated muscle over a one year period. Microarray analysis was performed on rat TA muscle from 4 groups (n=4/group) at 1,4, 12 and 52 weeks after BoNT-A injection and saline injected rats at 12 weeks as control. Fold changes were computed at each time point with respect to control. Results: Dramatic transcriptional adaptation occurs at 1 week with a paradoxical increase in expression of slow and immature isoforms; increased expression of genes in competing pathways of repair and atrophy; impaired mitochondrial biogenesis and increased metal ion imbalance. ECM adaptations occurred at 4weeks to the basal lamina and fibrillar ECM. The muscle transcriptome returned to the unperturbed state 12 weeks post-injection. Conclusion: Transcriptional adaptations resemble denervated muscle albeit some differences. Overall gene expression, across time, correlates with the generally accepted BoNT-A time course.
Systems analysis of transcriptional data provides insights into muscle's biological response to botulinum toxin.
Specimen part
View SamplesGan mice express Wnt1, Ptgs2, and Ptges, which develop inflammation-associated gastric tumors (Oshima et al, Gastroenterology 131: 1086, 2006). We examined the role of MyD88 in tumorigenesis by construction of Myd88-/- Gan mice and bone marrow transplantation into Gan mice from Myd88-/- mice. Overall design: Total RNA was prepared from wild-type normal glandular stomach (n=3: WT 1–WT 3), B6 C2mE mice (n=3: C2mE 1–C2mE 3), B6 Gan mice (n=3: Gan1–Gan3), B6 Gan MyD88-/- mice (n=3: Gan 1 (MyD88-/-)–Gan 3 (MyD88-/-)), and B6 bone marrow transplanted Gan mice from Myd88-/- mice (n=3: BMT-Gan 1 (from MyD88-/-)–BMT-Gan 3 (from MyD88-/-)). We used Illumina HiSeq 2000, and examined expression profiles.
NF-κB-induced NOX1 activation promotes gastric tumorigenesis through the expansion of SOX2-positive epithelial cells.
No sample metadata fields
View SamplesNoxo1, a component of NADPH oxidase 1 (NOX1) complex, is upregulated in gastric cancer cells in a inflammation-dependent manner, and plays an important role in tumorigenesis (Oncogene, 33: 3820, 2014). To examine the mechanism of NOX1/ROS signaling in tumorigenesis, MKN45 gastric cancer cells were treated with apocynin, an inhibitor for NOX, and their gene expression was examined by RNA sequencing. Based on expression data, Sox2 was shown to be suppressed by apocynin, suggesting a role of Sox2 in a inflammation-associated gastric tumorigenesis. Overall design: Total mRNA expression profiles of Apocynin administrated MKN45 in 2 trials.
NF-κB-induced NOX1 activation promotes gastric tumorigenesis through the expansion of SOX2-positive epithelial cells.
Specimen part, Cell line, Treatment, Subject
View SamplesAnalysis of umbilical vein endothelial cells (HUVEC) treated with Egr-3 siRNA under the VEGF treatment for 0,1, and 4 h. Egr-3, a member of early growth response family, is immediately and dramatically induced by VEGF in HUVEC, which regulates expression of many genes related to endothelial activation.
Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3.
No sample metadata fields
View SamplesWe demonstrated that, four weeks after the pulmonary artery banding (PAB) operation, rats could be divided into two groups: an F+ group in which the fibrotic area occupied more than 6.5% of the whole area of the heart tissues, and an F- group in which the fibrotic area occupied less than 6.5% of this area.
Fibrosis growth factor 23 is a promoting factor for cardiac fibrosis in the presence of transforming growth factor-β1.
Sex, Specimen part
View SamplesThe functional balance between brown adipose tissue (BAT) and white adipose tissue (WAT) is important for metabolic homeostasis. We compared the effects of fasting on the gene expression profiles in BAT, WAT and liver, using DNA microarray analysis. Tissues were obtained from rats that had been fed or fasted for 24 h. Taking the false discovery rate (FDR) into account, we extracted the top 1,000 genes that were expressed differentially between fed and fasted rats. In all three tissues, Gene Ontology analysis revealed marked changes in the expression of metabolism category genes and a hypergeometric test demonstrated that within this category, lipid and protein biosynthesis-related genes were down-regulated. These findings indicate simultaneous down-regulation of genes involved in energy-consuming pathways in the BAT, WAT and liver of fasted rats. In the BAT of fasted rats, there was marked up-regulation of genes in the protein ubiquitination category, suggesting that the ubiquitin-proteasome system is involved in saving energy as an adaptation to food shortage.
Up-regulation of genes related to the ubiquitin-proteasome system in the brown adipose tissue of 24-h-fasted rats.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Downregulation of ERG and FLI1 expression in endothelial cells triggers endothelial-to-mesenchymal transition.
Specimen part
View SamplesEndothelial cells (Ecs) lining the blood vessels have been known to have a variety of functions and play a central role in homeostasis of the circulatory system.
Transcription profiles of endothelial cells in the rat ductus arteriosus during a perinatal period.
Specimen part
View SamplesIdentification of cancer stem/initiating cells (CSCs/CICs) by a specific marker is useful for diagnosis and therapy of cancer. We have determined that PSF1 which plays a role in DNA replication in lower species is strongly expressed in wide range of normal stem cell population. Here, utilizing the transcriptional activity of PSF1 promoter in tumor cell xenograft model, we show that PSF1high cancer cells display malignant features including high proliferating activity, serial transplantation potential, and metastatic ability those are used for criteria of CSCs/CICs. PSF1high cancer cells localize in perivascular region and genetically display ES cell like signature. Silencing of PSF1 by RNAi inhibited growth of cancer cells mediated by disruption of DNA synthesis and chromosomal segregation. These suggested that PSF1 is a possible maker and a molecular target of CSCs/CICs.
PSF1, a DNA replication factor expressed widely in stem and progenitor cells, drives tumorigenic and metastatic properties.
Cell line
View SamplesEndothelial-to-mesenchymal transition (EndMT) in which endothelial cells lose their characteristics and acquire mesenchymal property has recently been recognized as a driver of disease progression in wide range of pathologies. However, the regulatory mechanism of EndMT has not been fully understood. Here, we found that combined knockdown of two ETS family transcription factors, ERG and FLI1, induced EndMT. Hence, we analyzed functions of ERG and FLI1 using gene expression microarray and ChIP-seq to elucidate the regulatory mechanism of EndMT.
Downregulation of ERG and FLI1 expression in endothelial cells triggers endothelial-to-mesenchymal transition.
No sample metadata fields
View Samples