refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 198 results
Sort by

Filters

Technology

Platform

accession-icon GSE45516
Expression data from human Huntington fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profile comparison from fibroblasts of Huntington individuals and normal ones

Publication Title

Gene expression profile in fibroblasts of Huntington's disease patients and controls.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE82225
Androgen-induced lncRNA SOCS2-AS1 Promotes Cell Growth and Inhibits Apoptosis in Prostate Cancer Cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Androgen-induced Long Noncoding RNA (lncRNA) SOCS2-AS1 Promotes Cell Growth and Inhibits Apoptosis in Prostate Cancer Cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE82224
Effects of SOCS2-AS1 inhibition in prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Prostate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation. We identified a novel androgen-regulated long non-coding (lnc) RNA, SOCS2-AS1.

Publication Title

Androgen-induced Long Noncoding RNA (lncRNA) SOCS2-AS1 Promotes Cell Growth and Inhibits Apoptosis in Prostate Cancer Cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE31430
Dietary zinc status reversibly alters both the feeding behaviors of the rats and gene expression patterns in diencephalon
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Nutritional status influences feeding behaviors, food preferences and taste sensations. For example, zinc-deficient rats have been reported to show reduced and cyclic food intake patterns with increased preferences for NaCl. Although some impairments of the central nervous and endocrine systems have been speculated to be involved in these phenomena, the effects of short-term zinc deficiency on the brain have not been well examined to date. In this study, we performed a comprehensive analysis of the gene expression patterns in the rat diencephalon, which is a portion of the brain that includes the hypothalamus and thalamus, after short-term zinc deficiency and also during zinc recovery. The rats showed reduced and cyclic food intake patterns with increased salt preferences after a 10-day dietary zinc deficiency. A comparative analysis of their diencephalons using cDNA microarrays revealed that approximately 1% of the genes expressed in the diencephalons showed significantly altered expression levels. On the other hand, a 6-day zinc supplementation following the deprivation allowed for the recovery to initial food intake behaviors and salt preferences. The expression levels of most of the genes that had been altered by exposure to zinc deficient conditions were also recovered. These results show that feeding behaviors, taste preferences and gene expression patterns in the diencephalon respond quickly to changing zinc levels. This suggests that the gene expression changes observed in the diencephalon and the accompanying functional changes may be related to the development of deviations in feeding behaviors and increased preferences for NaCl in zinc-deficient rats.

Publication Title

Dietary zinc status reversibly alters both the feeding behaviors of the rats and gene expression patterns in diencephalon.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE92355
Effects of POTEF-AS1 knockdown in prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Prostate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation. We identified POTEF-AS1 is an androgen-regulated non-coding RNA gene.

Publication Title

Androgen-induced lncRNA POTEF-AS1 regulates apoptosis-related pathway to facilitate cell survival in prostate cancer cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE10634
Aquaporin-11 knockout effect on kidney
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Aquaporin-11 (AQP11), a new member of the aquaporin family, is localized in the endoplasmic reticulum (ER). Aqp11/ mice neonatally suffer from polycystic kidneys derived from the proximal tubule. Its onset is proceeded by the vacuolization of ER. However, the mechanism for the formation of vacuoles and the development of cysts remain to be clarified. Here, we show that Aqp11/ mice and polycystic kidney disease animals share a common pathogenic mechanism of cyst formation.

Publication Title

Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE21417
Hepatic gene expression profile in persimmon peel extract administrated GK rat
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Persimmon (Diospyros kaki L. f.) is a most popular fruit in Asian countries but its peels are totally wasted despite of containing a plenty of antioxidants such as carotenoids and polyphenols. We prepared a fat-soluble extract from a persimmon peel (PP) fraction and fed type 2 diabetic Goto-Kakizaki (GK) rats with a PP extract-containing AIN-93G diet (PP diet) for 12 weeks. Compared with the control AIN-93G diet, the feeding of the PP diet reduced the plasma glutamic-pyruvate transaminase activity significantly, with accumulation of -cryptoxanthin in the liver. A DNA microarray analysis revealed that the PP diet altered the hepatic gene expression profiles. In particular, insulin signaling pathway-related genes were significantly enriched in differentially expressed gene sets. Moreover, Western blotting analysis actually showed the promotion of IR tyrosine phosphorylation. All these data suggest that the PP extract administration to the GK rats improves their insulin resistance.

Publication Title

Hepatic gene expression of the insulin signaling pathway is altered by administration of persimmon peel extract: a DNA microarray study using type 2 diabetic Goto-Kakizaki rats.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE19589
Effect of odorant inhalation on hypothlamic gene expression profile exposed to restraint stress in rats
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

As an attempt to assess physio-psychological effects elicited in odorant-inhaled rats, gene expression profiling in the central nervous system was carried out with rats housed under stressful conditions. (R)-(-)-linalool inhalation to rats during 2 h restraint significantly up-regulated the expression of genes in hypothalamus, which were found to be related to neuron differentiation and regulation of transcription as well as immediate early genes. The expressions of 104 among focused stress-regulated genes were significantly altered by the inhalation. The (R)-(-)-linalool inhalation significantly repressed the restraint-induced changes in the expression levels of 77 of the 104. It also promoted the expression of the remaining 27 genes including those related to anti-apoptotic heat shock proteins. The differences in their hypothalamic gene expressions revealed that the inhaled odorants actually influenced stress responses, based on the restraint-induced hypothalamic gene expressions related to apoptosis. These results indicate that the analysis of gene expression profiles in rats subjected to a stressful condition is useful to evaluate odorant-induced effects as shown by the particular results that (R)-(-)-linalool inhalation under only 2 h restraint- stressed condition induces neuron differentiation against apoptosis.

Publication Title

Neuron differentiation-related genes are up-regulated in the hypothalamus of odorant-inhaling rats subjected to acute restraint stress.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE52644
Nuclear receptor-mediated alleviation of alcoholic fatty liver by polyphenols contained in alcoholic beverages
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To elucidate the effect of the polyphenols contained in alcoholic beverages on the metabolic stress induced by ethanol consumption, four groups of mice were fed for five weeks on Lieber's diet with or without ethanol, with ethanol plus ellagic acid, and with ethanol plus trans-resveratrol. Alcoholic fatty liver was observed in the group fed the ethanol diet but not in those fed the ethanol plus polyphenol diets. Liver transcriptome analysis revealed that the addition of the polyphenols suppressed the expression of the genes related to cell stress that were up-regulated by ethanol alone. Conversely, the polyphenols up-regulated the genes involved in bile acid synthesis, unsaturated fatty acid elongation, and tetrahydrofolate synthesis that were down-regulated by ethanol alone. Because parts of these genes were known to be regulated by the constitutive androstane receptor (CAR), we performed the same experiment in the CAR-deficient mice. As a result, fatty liver was observed not only in the ethanol group but also with the ethanol plus polyphenol groups. In addition, there was no segregation of the gene expression profiles among these groups. These results provide a molecular basis for the prevention of alcohol-induced stress by the polyphenols in alcoholic beverages.

Publication Title

Nuclear receptor-mediated alleviation of alcoholic fatty liver by polyphenols contained in alcoholic beverages.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE56365
Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fueled matrix metalloproteinase production
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

In addition to satisfying the metabolic demands of cells, mitochondrial metabolism helps regulate immune cell function. To date, such cell-intrinsic metabolic-immunologic cross-talk has only been described operating in cells of the immune system. Here we show that epidermal cells utilize fatty acid -oxidation to fuel their contribution to the immune response during cutaneous inflammation. By live imaging metabolic and immunological processes within intact zebrafish embryos during cutaneous inflammation, we uncover a mechanism where elevated -oxidation-fueled mitochondria-derived reactive oxygen species within epidermal cells helps guide matrix metalloproteinase-driven leukocyte recruitment. This mechanism requires the activity of a zebrafish homolog of the mammalian mitochondrial enzyme, Immunoresponsive gene 1. This study describes the first example of metabolic reprogramming operating within a non-immune cell type to help control its contribution to the immune response. Targeting of this metabolic-immunologic interface within keratinocytes may prove useful in treating inflammatory dermatoses.

Publication Title

Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact