Embryonic stem cells (ESCs) may be able to cure or alleviate the symptoms of various degenerative diseases. However, unresolved issues regarding apoptosis, maintaining function and tumor formation mean a prudent approach should be taken towards advancing ESCs into human clinical trials. The rhesus monkey provides the ideal model organism for developing strategies to prevent immune rejection and test the feasibility, safety and efficacy of ESC-based medical treatments. Transcriptional profiling of rhesus ESCs provides a foundation for future pre-clinical ESC research using non-human primates as the model organism. In this research we use microarray, immunocytochemistry, real-time and standard RT-PCR to characterize and transcriptionally profile rhesus monkey embryonic stem cells. We identify 367 rhesus monkey stemness genes, we demonstrate the high level (>85%) of conservation of rhesus monkey stemness gene expression across five different rhesus monkey embryonic stem cell lines, we demonstrate that rhesus monkey ESC lines maintain a pluripotent undifferentiated state over a wide range of Pou5f1 (Oct-4) expression levels and we compare rhesus monkey, human and murine stemness genes to identify the key mammalian stemness genes.
Transcriptional profiling of rhesus monkey embryonic stem cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells.
Cell line
View SamplesKnowledge of both the global chromatin structure and the gene expression programs of human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells should provide a robust means to assess whether the genomes of these cells have similar pluripotent states. Recent studies have suggested that ES and iPS cells represent different pluripotent states with substantially different gene expression profiles. We describe here a comparison of global chromatin structure and gene expression data for a panel of human ES and iPS cells. Genome-wide maps of nucleosomes with histone H3K4me3 and H3K27me3 modifications indicate that there is little difference between ES and iPS cells with respect to these marks. Gene expression profiles confirm that the transcriptional programs of ES and iPS cells show very few consistent differences. Although some variation in chromatin structure and gene expression was observed in these cell lines, these variations did not serve to distinguish ES from iPS cells.
Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells.
Cell line
View SamplesMitochondria are vital due to their principal role in energy production via oxidative phosphorylation (OXPHOS)1. Mitochondria carry their own genome (mtDNA) encoding critical genes involved in OXPHOS, therefore, mtDNA mutations cause fatal or severely debilitating disorders with limited treatment options. 2. Clinical manifestations of mtDNA disease vary based on mutation type and heteroplasmy levels i.e. presence of mutant and normal mtDNA within each cell. 3,4. We evaluated therapeutic concepts of generating genetically corrected pluripotent stem cells for patients with mtDNA mutations. We initially generated multiple iPS cell lines from a patient with mitochondrial encephalomyopathy and stroke-like episodes (MELAS) caused by a heteroplasmic 3243A>G mutation and a patient with Leigh disease carrying a homoplasmic 8993T>G mutation (Leigh-iPS). Due to spontaneous mtDNA segregation in proliferating fibroblasts, isogenic MELAS iPS cell lines were recovered containing exclusively wild type (wt) mtDNA with normal metabolic function. As expected, all iPS cells from the patient with Leigh disease were affected. Using somatic cell nuclear transfer (SCNT; Leigh-NT1), we then simultaneously replaced mutated mtDNA and generated pluripotent stem cells from the Leigh patient fibroblasts. In addition to reversing to a normal 8993G>T, oocyte derived donor mtDNA (human haplotype D4a) in Leigh-NT1 differed from the original haplotype (F1a) at a additional 47 nucleotide sites. Leigh-NT1 cells displayed normal metabolic function compared to impaired oxygen consumption and ATP production in Leigh-iPS cells or parental fibroblasts (Leigh-fib). We conclude that natural segregation of heteroplasmic mtDNA allows the generation of iPS cells with exclusively wild type mtDNA. Moreover, SCNT offers mitochondrial gene replacement strategy for patients with homoplasmic mtDNA disease. Overall design: Duplicate cDNA libraries of fibroblasts from a Leigh patient and a MELAS patient, two sendai produced iPSC lines from the Leigh patient and three sendai produced iPSC lines from the MELAS patient, three fibroblasts lines produced by differentiating three iPS Leigh patient iPSC lines to fibroblasts, two somatic cell nuclear transfer produced NT-ESC lines from the Leigh patient, two fibroblast lines produced by differentiating two Leigh patient NT-ESC lines, four fibroblasts lines produced by differentiating four MELAS patient iPSC lines with the mutation to fibroblasts, four fibroblast lines produced by differentiating two IVF-ESC lines without mutated mtDNA genomes, four fibroblast lines produced by differentiating two somatic cell nuclear transfer NT-ESC lines without mutated mtDNA genomes, and four fibroblasts lines produced by differentiating two MELAS patient iPSC lines without the mutation to fibroblasts. The sequence reads were mapped to hg19 reference genome and hits that passed quality filters were analyzed for differential expression.
Metabolic rescue in pluripotent cells from patients with mtDNA disease.
No sample metadata fields
View SamplesMicroglia-like cells and neural cells were generated from several hES and hIPS lines. As subset was characterized by RNA seq and compared to expression profiles of published primary and induced samples. ABSTRACT: Microglia, the only lifelong resident immune cells of the central nervous system (CNS), are highly specialized macrophages which have been recognized to play a crucial role in neurodegenerative diseases such as Alzheimer's, Parkinson's and Adrenoleukodystrophy (ALD). However, in contrast to other cell types of the human CNS, bona fide microglia have not yet been derived from cultured human pluripotent stem cells. Here we establish a robust and efficient protocol for the rapid production of microglia-like cells from human embryonic stem (ES) and induced pluripotent stem (iPS) cells that uses defined serum-free culture conditions. These in vitro pluripotent stem cell-derived microglia-like cells (termed pMGLs) faithfully recapitulate the expected ontogeny and characteristics of their in vivo counterparts and resemble primary fetal human and mouse microglia. We generated these cells from multiple disease-specific cell lines, and find that pMGLs derived from MeCP2 mutant hES cells are smaller than their isogenic controls. We further describe a culture platform to study integration and live behavior of pMGLs in organotypic 3D-cultures. This modular differentiation system allows the study of microglia in highly defined conditions, as they mature in response to developmentally relevant cues, and provides a framework to study the long-term interaction of microglia residing in a tissue-like environment. Overall design: Individual donors/genetic backgrounds. Dataset inlcudes 4 differentiated neural progenitor biological replicates (NPC1-4), 2 primary fetal microglia samples as reference, 5 induced microglia samples grown in basal medium (pMGL1-5), 3 induced microglia samples grown in neural conditioned medium (pMGL1-3+NCM)
Efficient derivation of microglia-like cells from human pluripotent stem cells.
Subject
View SamplesParthenogenetic embryonic stem cells (PESCs) may have future utility in cell replacement therapies. We examined genome-wide mRNA expression profiles of monkey PESCs relative to ESCs derived from fertilized embryos. Several known paternally-imprinted genes were in the highly down-regulated group in PESCs compared to ESCs. Allele specific expression analysis of paternally-imprinted genes, i.e., those genes whose expression is down-regulated in PESCs, led to the identification of one novel candidate that was exclusively expressed from a paternal allele. Our findings suggest that PESCs could be used as a model for studying genomic imprinting and in the discovery of novel imprinted genes.
Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells.
Sex, Specimen part
View SamplesDerivation of embryonic stem cells (ESC) genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing any immunorejection issues. However, no primate nuclear transfer embryonic stem (ntES) cell lines have been derived to date. Here, we used a modified SCNT technique to produce rhesus macaque SCNT blastocysts at a relatively high efficiency from adult donor cells and we successfully derived two primate ntES cell lines from 304 oocytes (an overall efficiency of 0.7%). Nuclear and mitochondrial DNA analysis confirmed the ntES cell lines were derived from rhesus monkey SCNT blastocysts and both rhesus monkey ntES cell lines exhibited a normal ESC morphology, expressed key stemness markers, were transcriptionally indistinguishable from control ESC lines and differentiated into multiple cell types. This is, to our knowledge, the first confirmed derivation of primate ntES cell lines.
Producing primate embryonic stem cells by somatic cell nuclear transfer.
No sample metadata fields
View SamplesInduced pluripotent stem cells (iPSCs) derived from somatic cells of patients by viral vector-mediated factor transduction represent a powerful tool for biomedical research and may provide a source for cell replacement therapies. However, the proviruses encoding the reprogramming factors represent a major limitation of the current technology because even low vector expression may alter the differentiation potential of the iPSCs and induce malignant transformation. Here we show that fibroblasts from five patients with idiopathic Parkinsons disease (PD) can be efficiently reprogrammed into hiPSCs and subsequently differentiated into dopaminergic neurons. Moreover, we derived PD specific hiPSCs free of reprogramming factors using Cre-recombinase excisable viruses. Upon factor deletion these cells maintain a pluripotent state and intact karyotype. Importantly, these factor-free hiPSCs show a global gene expression profile, which is more closely related to hESCs than to hiPSCs carrying the transgenes. Our results indicate that residual transgene expression in conventional virus-carrying hiPSCs can affect their molecular characteristics and that factor-free hiPSCs therefore represent a more suitable source of cells for modeling of human disease.
Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors.
No sample metadata fields
View SamplesIn this study, we explored x-inactivation in monkey embryos (ICM and TE separately) and pluripotent stem cells (IVF derived ES, SCNT-derived ES and monkey iPS)
X-chromosome inactivation in monkey embryos and pluripotent stem cells.
Sex, Specimen part
View SamplesWe compared human female hiPSC lines (all derived from IMR-90 fibroblasts) that were XIST RNA-positive and XIST RNA-negative. We also examined the gene expression patterns for 2 female hIPSCs (derived from different disease model fibroblasts) that were also negative for XIST RNA. hiPS 12D-1 is derived from Huntington's Disease patient and 6C-1 is derived from a Type I Diabetes Mellitus patient (Park et al Nature 2008).
Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes.
Specimen part
View Samples