To better understand human spermatogonial stem cells (SSCs), we profiled their transciptome and epigenome, which revealed the mechanism how human SSCs regulates their self-renewal versus differentiation dermination, as well as how latent pluripotency is established in human SSCs. Remarkly, we discovered signaling pathways (e.g. LIF, BMP, WNT) that differentially regulated self-renewal vesus differentiation in SSCs. We also discovered that SSCs repress core pluripotent factors (Sox2, Pou5f1 and Nanog) yet activate ancillary factors (e.g. Klf4, Mbd3, Tcf3, Sall4) transcriptionally and epigenetically. Overall design: Using SSEA4 as self-renewal marker and Kit as differentiating marker, we isolated self-renewal and differentiation SSCs by magnetic antibody cell sorting (MACS). SSEA4+ or Kit+ cells were loaded into 5-10 µm integrated fluidic circuits (IFCs) using Fluidigm C1 instrument. Single cells in IFCs were lysed and total RNA was harvested for polyadenylation selection, reverse transcription and PCR amplification. Library constructions were performed according to Fluidigm Library preparation with Nextera XT protocol and sequenced on a 50-cycle single end run.
Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development.
Specimen part, Subject
View SamplesTo better understand human spermatogonial stem cells (SSCs), we profiled their transciptome and epigenome, which revealed the mechanism how human SSCs regulates their self-renewal versus differentiation dermination, as well as how latent pluripotency is established in human SSCs. Remarkly, we discovered signaling pathways (e.g. LIF, BMP, WNT) that differentially regulated self-renewal vesus differentiation in SSCs. We also discovered that SSCs repress core pluripotent factors (Sox2, Pou5f1 and Nanog) yet activate ancillary factors (e.g. Klf4, Mbd3, Tcf3, Sall4) transcriptionally and epigenetically. Overall design: Using SSEA4 as self-renewal marker and Kit as differentiating marker, we isolated self-renewal and differentiation SSCs by magnetic antibody cell sorting (MACS). Total RNA were extracted from those populations, and standard RNA sequencing libraries were prepared for sequnecing on a 50-cycle single end run.
Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development.
Specimen part, Subject
View SamplesHuman adult spermatogenesis involves a balance of spermatogonial stem cell self renewal and differentiation, alongside complex germline-niche interactions. To better understand, we performed single cell RNA sequencing of ~7000 testis cells from three healthy men of peak reproductive age. Our analyses revealed multiple distinctive transcriptional 'states' of self-renewing and differentiating spermatogonia, the cellular stages of gametogenesis, five niche cells (Leydig, Myoid, Sertoli, Endothelial, macrophage) and insights into germline-niche communication. Spermatogenesis was reconstructed computationally, which identified sequential coding, noncoding, and repeat-element transcriptional signatures. A new, developmentally early and likely quiescent spermatogonial state is identified (GFRA1-/ETV5-/ID4+/UTF1+/FGFR3+). Notably, certain epigenetic features combined with nascent transcription analyses suggest considerable plasticity within certain spermatogonial populations/states. Key findings were validated via RNA and protein staining. Taken together, we provided the first “Cell Atlas” of the adult human testis, and provide multiple new insights into germ cell development and germ cell – niche interaction. Overall design: We isolated single testicular cell from two infant (13 months old). Two technical replicates were performed for each individual.
The adult human testis transcriptional cell atlas.
Sex, Age, Specimen part, Subject
View Samples