refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 277 results
Sort by

Filters

Technology

Platform

accession-icon SRP156461
Transcriptome analysis of mesenchymal CSC-like cells harboring mutant p53
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We show that mesenchymal CSC-like cells express an embryonic stem cell signature that is mutant p53 dependent Overall design: Examination of three p53 mutant mesenchymal stem cells and ten derived CSC-like cell lines and 2 derived p53 mutant KO clones compared to control clones

Publication Title

A Mutant p53-Dependent Embryonic Stem Cell Gene Signature Is Associated with Augmented Tumorigenesis of Stem Cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE41050
Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE41049
Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues (Gene Expression data)
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

DNA methylation has been comprehensively profiled in normal and cancer cells, but the dynamics that form, maintain and reprogram differentially methylated regions remain enigmatic. We show that methylation patterns within populations of cells from individual somatic tissues are heterogeneous and polymorphic. Using in vitro evolution of immortalized fibroblasts for over 300 generations, we track the dynamics of polymorphic methylation at regions developing significant differential methylation on average. The data indicate that changes in population-averaged methylation occur through a stochastic process that generates a stream of local and uncorrelated methylation aberrations. Despite the stochastic nature of the process, nearly deterministic epigenetic remodeling emerges on average at loci that lose or gain resistance to methylation accumulation. Changes in the susceptibility to methylation accumulation are correlated with changes in histone modifications and CTCF occupancy. Characterizing epigenomic polymorphism within cell populations is therefore critical for understanding methylation dynamics in normal and cancer cells.

Publication Title

Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE47172
Expression data from human response to invasive pneumococcal disease.
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

There is differential expression of genes between cases and controls using microarray analysis, and genes that are crucial for host defence responses are significantly up-regulated in cases during pneumococcal infection.

Publication Title

Peripheral blood RNA gene expression in children with pneumococcal meningitis: a prospective case-control study.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE22225
CLN3 patients with differing progression of the disease
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mutations in the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis, a pediatric neurodegenerative disorder characterized by visual loss, epilepsy and psychomotor deterioration. Although most CLN3 patients carry the same 1 kb deletion in the CLN3 gene, their disease phenotype can be variable. The aims of this study were (1) to identify genes that are dysregulated in CLN3 disease regardless of the clinical course that could be useful as biomarkers, and (2) to find modifier genes that affect the progression rate of the disease.

Publication Title

Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE77094
Gene expression profiles of retinoblastoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

In order to identify the gene targets of frequently altered chromosomal regions in retinoblastoma, a meta-analysis of genome-wide copy number alterations studies on primary retinoblastoma tissue and retinoblastoma cell lines was performed. Published studies were complemented by copy number and gene expression analysis on primary and cell line samples of retinoblastoma. This dataset includes the gene expression data of the retinoblastoma cell lines

Publication Title

A Meta-Analysis of Retinoblastoma Copy Numbers Refines the List of Possible Driver Genes Involved in Tumor Progression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon E-MEXP-3567
Transcription profiling by array of children blood with serious bacterial infections
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We aimed to discover a combination of reliable and functionally important biomarkers of severe bacterial infection (SBI) using transcriptomics, and to evaluate their clinical validity.

Publication Title

Novel biomarker combination improves the diagnosis of serious bacterial infections in Malawian children.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE59983
Gene expression profiling of primary human retinoblastoma
  • organism-icon Homo sapiens
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Background

Publication Title

Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP052034
Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

Direct conversion of somatic cells into neural stem cells (NSCs) by defined factors holds great promise for mechanistic studies, drug screening, and potential cell therapies for different neurodegenerative diseases. Here, we report that a single zinc-finger transcription factor, Zfp521, is sufficient for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs. In vitro, Zfp521-induced NSCs maintained their characteristics in the absence of exogenous factor expression and exhibited morphological, molecular, developmental, and functional properties that were similar to control NSCs. Additionally, the single seeded induced NSCs were able to form NSC colonies with efficiency comparable to control NSCs and expressed NSC markers. The converted cells were capable of surviving, migrating and attaining neural phenotypes after transplantation into neonatal mouse- and adult rat brains, without forming tumors. Moreover, the Zfp521-induced NSCs predominantly expressed rostral genes. Our results suggest a facilitated approach for establishing human NSCs through Zfp521-driven conversion of fibroblasts. Overall design: RNA-Seq of 3 replicates each of iNSC, WT-NSC, and HNF

Publication Title

Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP140095
Inhibition of EGFR signaling downregulates K-RAS mutated activity
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

KRAS mutations are the ost abundand driver mutations found in lung adenocarcinoma patients. Unfortunately, there are no clinical approved inhibitors available, to directly target mutant forms of KRAS. The aim of the study was to unravel the impact of upstream Egfr activation in signaling of mutated K-ras. We found that upregulation of G12D mutant Kras induced genes was significantly impaired when Egfr was knocked out. Our data suggests that signaling of mutant Kras depends on upstream activation. This finding may be exploited therapeutically by targeting EGFR in KRAS mutant patients. Overall design: We isolated mouse alveolar type II cells and induced the Kras G12D mutation, with and without concomitant Egfr knockout, in vitro. Cells lysates were analyzed 5 days following transgene induction.

Publication Title

JAK-STAT inhibition impairs K-RAS-driven lung adenocarcinoma progression.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact