refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 159 results
Sort by

Filters

Technology

Platform

accession-icon E-TABM-344
Transcription profiling by array of M and S molecular forms of Anopheles gambiae at each of three developmental stages
  • organism-icon Anopheles gambiae
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

We examined patterns of gene expression in two independent colonies of both M and S molecular forms of Anopheles gambiae at each of three developmental stages of interest: late larvae, sugar-fed virgin females, and gravid females. For each colony, replicates were derived from independent RNA samples extracted from different cohorts to ensure that trends were reproducible. In addition, each replicate was derived from larvae (adults) drawn from three pans (cages) to minimize the contribution of any individual pan to variation between samples. Data were obtained from a total of five biological replicates per mosquito colony.

Publication Title

Differential gene expression in incipient species of Anopheles gambiae.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE54417
mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mechanistic target of rapamycin mTORC1 is a key regulator of cell metabolism and autophagy. Despite widespread clinical use of mTOR inhibitors, the role of mTORC1 in renal tubular function and kidney homeostasis remains elusive. By utilizing constitutive and inducible deletion of conditional Raptor alleles in renal tubular epithelial cells, we discovered that mTORC1 deficiency caused a marked concentrating defect, loss of tubular cells and slowly progressive renal fibrosis. Transcriptional profiling revealed that mTORC1 maintains renal tubular homeostasis by controlling mitochondrial metabolism and biogenesis as well as transcellular transport processes involved in counter-current multiplication and urine concentration. Although mTORC2 partially compensated the loss of mTORC1, exposure to ischemia and reperfusion injury exaggerated the tubular damage in mTORC1-deficient mice, and caused pronounced apoptosis, diminished proliferation rates and delayed recovery. These findings identify mTORC1 as an essential regulator of tubular energy metabolism and as a crucial component of ischemic stress responses. Pharmacological inhibition of mTORC1 likely affects tubular homeostasis, and may be particularly deleterious if the kidney is exposed to acute injury. Furthermore, the combined inhibition of mTORC1 and mTORC2 may increase the susceptibility to renal damage.

Publication Title

mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58548
Paradoxical neurobehavioral rescue by cues associated with infant trauma: Amygdala 5-HT and CORT
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

We show that infant trauma, as modeled by infant paired odor-shock conditioning, results in later life depressive-like behavior that can be modulated by learned infant cues (i.e., odor previously paired with shock). We have previously shown that this infant attachment odor learning paradigm results in the creation of a new artificial maternal odor that is able to control pup behavior and retain its value throughout development. Here, we assess the mechanism by which this artificial maternal odor is able to rescue depressive-like behavior and show that this anti-depressant like effect results in glucocorticoid and serotonin (5-HT) related changes in amygdala gene expression and is dependent on amygdala 5-HT. Furthermore, increasing amygdala 5-HT and blocking corticosterone (CORT) in the absence of odor mimics the adult rescue effects elicited by the artificial maternal odor, suggesting a mechanism by which odor presentation exerts its repair effects.

Publication Title

Enduring good memories of infant trauma: rescue of adult neurobehavioral deficits via amygdala serotonin and corticosterone interaction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44321
poplar bent study-TRANSCRIPTOMIC ANALYSIS OF POPLAR STEM ACCOMMODATION TO REPEATED BENDING Species: Populus tremula x Populus aba
  • organism-icon Populus tremula x populus alba
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

affy_pop_2011_08 - poplar bent study - genes regulated by PtaZFP2 in absence of mechanical stress - genes regulated by PtaZFP2 after one bending.Species: Populus tremula x Populus alba-- The laboratory previously established a poplar transgenic line overexpressing PtaZFP2 under the control of an estradiol-inducible promoter. - the experiment, conducted on 3-month-old hydroponically-grown poplars, consists in the comparison of WT poplars treated with estradiol and the PtaZFP2-overexpressing line treated with estradiol. We also compared unbent and bent PtaZFP2-overexpressing poplars. The applied strain is quantitatively controlled (Coutand & Moulia, 2000, JExpBot; coutand et al., 2009, Plant Physiology) -

Publication Title

The zinc finger protein PtaZFP2 negatively controls stem growth and gene expression responsiveness to external mechanical loads in poplar.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE43533
poplar estradiol study-TRANSCRIPTOMIC ANALYSIS OF POPLAR STEM ACCOMMODATION TO REPEATED BENDING Species: Populus tremula x Populus aba
  • organism-icon Populus tremula x populus alba
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

affy_pop_2011_08 - poplar estradiol study - genes regulated by PtaZFP2 in absence of mechanical stress - genes regulated by PtaZFP2 after one bending.Species: Populus tremula x Populus alba-The laboratory previously established a poplar transgenic line overexpressing PtaZFP2 under the control of an estradiol-inducible promoter. - the experiment, conducted on 3-month-old hydroponically-grown poplars, consists in the comparison of WT poplars treated with estradiol and the PtaZFP2-overexpressing line treated with estradiol. We also compared unbent and bent PtaZFP2-overexpressing poplars. The applied strain is quantitatively controlled (Coutand & Moulia, 2000, JExpBot; coutand et al., 2009, Plant Physiology)

Publication Title

The zinc finger protein PtaZFP2 negatively controls stem growth and gene expression responsiveness to external mechanical loads in poplar.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE60693
Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse Liver Humanized for Constitutive Androstane and Pregnane X Receptors
  • organism-icon Mus musculus
  • sample-icon 345 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Rat Expression 230A Array (rae230a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors.

Sample Metadata Fields

Age, Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE60684
Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse Liver Humanized for Constitutive Androstane and Pregnane X Receptors (mRNA)
  • organism-icon Mus musculus
  • sample-icon 167 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcino- genesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CARKO -PXRKO ), double humanized CAR and PXR (CARh - PXRh), and wild-type C57BL/6 mice. Wild-type and CARh-PXRh mouse livers exhibited temporally and quantitatively similar tran- scriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were ob- served with peak expression occurring between 1 and 7 days PB ex- posure. All these transcriptional responses were absent in CARKO- PXRKO mouse livers and largely reversible in wild-type and CARh - PXRh mouse livers following 91 days of PB exposure and a subse- quent 4-week recovery period. Furthermore, PB-mediated upregu- lation of the noncoding RNA Meg3, which has recently been associ- ated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CARh-PXRh mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.

Publication Title

Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors.

Sample Metadata Fields

Age, Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE79263
Analysis of gene expression in hTERT/cdk4 immortalized human myoblasts compared to their primary populations in both undifferentiatied (myoblast) and differentiated (myotube) states
  • organism-icon Homo sapiens
  • sample-icon 94 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

hTERT/cdk4 immortalized myogenic human cell lines represent an important tool for skeletal muscle research, being used as therapeutically-pertinent models of various neuromuscular disorders and in numerous fundamental studies of muscle cell function. However, the cell cycle is linked to other cellular processes such as integrin regulation, the PI3K/Akt pathway, and microtubule stability, raising the question as to whether transgenic modification of the cell cycle results in secondary effects that could undermine the validity of these cell models. Here we subjected healthy and disease lines to intensive transcriptomic analysis, comparing immortalized lines with their parent primary populations in both differentiated and undifferentiated states, and testing their myogenic character by comparison with non-myogenic (CD56-negative) cells. We found that immortalization has no measurable effect on the myogenic cascade or on any other cellular processes, and that it was protective against the systems level effects of senescence that are observed at higher division counts of primary cells.

Publication Title

Skeletal muscle characteristics are preserved in hTERT/cdk4 human myogenic cell lines.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE74410
Prdm1
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP065344
Single-cell RNA-seq transcriptome profiling of Prdm1+ lineages in E9.5 mouse placenta
  • organism-icon Mus musculus
  • sample-icon 77 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Our goal was to transcriptionally profile Prdm1+ cell lineages of maternal and embryonic origin in mid-gestation mouse placenta in order to study vascular mimicry and additional processes in the placenta. Overall design: Profiling of 61 single cells and 17 clusters of 2 or 3 cells chosen based on expression of Prdm1, a paternally inherited Prdm1-Venus fluorescent reporter, progenitor trophoblast marker Gjb3 and spiral artery trophoblast giant cell marker Prl7b1.

Publication Title

Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact