The distinction between lymphatic and blood vessels is biologically fundamental. Two immortalized cell lines, which have been widely used as models for endothelial cells of blood vascular origin, are the human microvascular endothelial cell line-1 (HMEC-1) and the telomerase-immortalized microvascular endothelial cell line (TIME). However, analysis of protein expression by flow cytometry revealed expression of lymphatic markers on these cell lines. Furthermore, functional in vitro leukocyte transmigration assays demonstrated deficiencies in several steps of the leukocyte extravasation cascade. Hence we performed this microarray analysis of the gene expression in HMEC-1 and TIME. We then compare the expression profiles to those of published blood- and lymphatic endothelial cells.
Plasticity of blood- and lymphatic endothelial cells and marker identification.
Cell line
View SamplesBackground: Castration-resistant prostate cancer (CRPC) represents a therapeutic challenge for current medications.
Integrative genomic, transcriptomic, and RNAi analysis indicates a potential oncogenic role for FAM110B in castration-resistant prostate cancer.
Sex, Specimen part, Disease, Disease stage, Cell line, Treatment, Race
View SamplesWhole blood RNA-Seq was applied to investigate gene expression kinetics in Tanzanian males who underwent controlled malaria infection by intradermal injection with aseptic, purified, cryopreserved Plasmodium falciparum sporozoites. Overall design: 10 volunteers injected intradermally with a total of 25'000 infectious Plasmodium falciparum sporozoites (PfSPZ).
Whole blood transcriptome changes following controlled human malaria infection in malaria pre-exposed volunteers correlate with parasite prepatent period.
Subject
View SamplesIdentifying immune correlates of protection and mechanisms of immunity accelerates and streamlines the development of vaccines. RTS,S/AS01E, the most advanced malaria vaccine, has moderate efficacy in African children. In contrast, immunization with sporozoites under antimalarial chemoprophylaxis (CPS immunization) can provide 100% sterile protection in naïve adults. We used systems biology approaches to identify correlates of vaccine-induced immunity based on transcriptomes of peripheral blood mononuclear cells from subjects immunized with RTS,S/AS01E or chemo-attenuated sporozoites stimulated with parasite antigens in vitro. Specifically, we used samples of subjects from two age cohorts and 3 African countries participating in an RTS,S/AS01E pediatric phase 3 trial and malaria-naïve subjects participating in a CPS trial. We identified both pre-immunization and post-immunization transcriptomic signatures correlating with protection. Signatures were validated in independent children and infants from the RTS,S/AS01E phase 3 trial and subjects from an independent CPS trial with high accuracies (>70%). Transcription modules revealed interferon, NF-B, TLR, and monocyte-related signatures associated with protection. Pre-immunization signatures suggest the potential for strategies to prime the immune system before vaccination towards improving vaccine immunogenicity and efficacy. Finally, signatures of protection could be useful to determine efficacy in clinical trials, accelerating vaccine candidate testing. Nevertheless, signatures should be tested more extensively across multiple cohorts and trials to demonstrate their universal predictive capacity.
Antigen-stimulated PBMC transcriptional protective signatures for malaria immunization.
Sex, Specimen part, Subject, Time
View Samples