refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 219 results
Sort by

Filters

Technology

Platform

accession-icon GSE30719
Microarray Analysis of West Nile Virus infected Human Retinal Pigment Epithelium
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Low-level infection is believed to play a role in the degradation of the outer blood retinal barrier, which is composed of retinal pigment epithelial (RPE) cells.

Publication Title

Microarray analysis of gene expression in West Nile virus-infected human retinal pigment epithelium.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon SRP073097
Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The host innate immune response is the first line of defense against pathogens and is orchestrated by the concerted expression of genes induced by microbial stimuli. Deregulated expression of these genes is linked to the initiation and progression of numerous diseases associated with exacerbated inflammation. Here, we identify Topoisomerase 1 (Top1) as a critical positive regulator of RNA polymerase II (RNAPII) transcriptional activity at pathogen-induced genes. Notably, depletion or chemical inhibition of Top1 suppresses the host response against replicating Influenza and Ebola viruses as well as bacterial products. As a result, therapeutic pharmacological inhibition of Top1 protects mice from death in experimental models of chemical- and pathogen-induced lethal inflammation. Our results indicate that Top1 inhibition could be used as therapy against life threatening infections characterized by an acutely exacerbated immune response. Overall design: RNA seq was performed on Ebola (Wild type and mutant) infected or uninfected THP-1 cells in the presence of DMSO or Camptothecin

Publication Title

Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE42253
Gene expression data from T cells and NK cells with and without treatment with Hsp90 inhibitor (Geldanamycin)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hsp90 is critical for regulation of the phenotype and functional activity of human T lymphocytes and natural killer (NK) cells.

Publication Title

Heat shock protein 90 is critical for regulation of phenotype and functional activity of human T lymphocytes and NK cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP154474
RNA-seq and flow-cytometry of conventional, scalp, and palmoplantar psoriasis reveal shared and distinct molecular pathways
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina HiSeq 4000

Description

It has long been recognized that anatomic location is an important feature for defining distinct subtypes of plaque psoriasis. However, little is known about the molecular differences between scalp, palmoplantar, and conventional plaque psoriasis. To investigate the molecular heterogeneity of these psoriasis subtypes, we performed RNA-seq and flow cytometry on skin samples from individuals with scalp, palmoplantar, and conventional plaque psoriasis, along with samples from healthy control patients. We performed differential expression analysis and network analysis using weighted gene coexpression network analysis (WGCNA). Our analysis revealed a core set of 763 differentially expressed genes common to all sub-types of psoriasis. In contrast, we identified 605, 632, and 262 genes uniquely differentially expressed in conventional, scalp, and palmoplantar psoriasis, respectively. WGCNA and pathway analysis revealed biological processes for the core genes as well as subtype-specific genes. Flow cytometry analysis revealed a shared increase in the percentage of CD4+ T regulatory cells in all psoriasis subtypes relative to controls, whereas distinct psoriasis subtypes displayed differences in IL-17A, IFN-gamma, and IL-22 production. This work reveals the molecular heterogeneity of plaque psoriasis and identifies subtype-specific signaling pathways that will aid in the development of therapy that is appropriate for each subtype of plaque psoriasis. Overall design: Transcriptomic profiles were obtained from palmoplantar (n = 3), scalp (n = 8), and conventional psoriatic skin (n = 8) as well as healthy control skin (n = 9) biopsies on the Illumina HiSeq 2000/4000 platforms. Multi-parameter FACS was also performed on each biopsy sample to obtain T cell populations (CD4+ T effectors, CD8+ T cells, and CD4+Foxp3+ Tregs).

Publication Title

RNA-seq and flow-cytometry of conventional, scalp, and palmoplantar psoriasis reveal shared and distinct molecular pathways.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE4034
Rapid selection response for contextual fear conditioning in a cross between C57BL/6J and A/J (palme-affy-mouse-198967)
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

These data are from the brains (amygdala and hippocampus) of mice originally derived from a cross between C57BL/6J and A/J inbred strains. We used short-term selection to produce outbred mouse lines with differences in contextual fear conditioning, which is a measure of fear learning. We selected for a total of 4 generations. Fear learning differed in the selected lines and this difference was stronger with each successive generation of selection. We identified several QTLs for the selection response, including a highly significant QTL at the tyr locus (p < 9.6(-10)). We used Affymetrix microarrays to identify many differentially expressed genes in the amygdala and hippocampus of mice from the final generation of selection. Amygdala and hippocampus samples were rapidly dissected out of experimentally nave mice from each selected line. Three samples were pooled and hybridized to each array. Experimentally nave mice were used because the behavior of the mice can be reliably a nticipated due to their lineage. Thus these gene expression differences are not due to the response to human handling, foot shock or fear-inducing conditioned stimuli. We have a second similar study that focuses on a different selected population that was based on C57BL/6J and DBA/2J mice (see GES4035).

Publication Title

Rapid selection response for contextual fear conditioning in a cross between C57BL/6J and A/J: behavioral, QTL and gene expression analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26455
Transcriptome data for human induced pluripotent stem (iPS) cells and human embryonic stem (ES) cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21383
Expression data from porcine ovary tissue of sows from two prolificacy levels
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Previous results from a genome scan in a F2 Iberian by Meishan intercross showed several chromosome regions associated with litter size traits. In order to identify candidate genes underlying these QTL we have performed an ovary gene expression analysis during pregnancy. F2 sows were ranked by their estimated breeding values for prolificacy, the six sows with higher EBV (HIGH prolificacy) and the six with lower EBV (LOW prolificacy) were selected. Samples were hybridized to Affymetrix porcine expression microarrays. The statistical analysis with a mixed-model approach identified 221 differentially expressed probes, representing 189 genes. These genes were functionally annotated in order to identify the genetic pathways overrepresented. Among the most represented functional groups the first one was immune system response activation against external stimulus. The second group was made up of genes which regulate the maternal homeostasis by complement and coagulation cascades. The last group was involved on lipid and fatty acid enzymes of metabolic processes, which participate in steroidogenesis pathway. In order to identify powerful candidate genes for prolificacy, the second approach of this study was merging microarray data with position information of QTL affecting litter size, previously detected in the same experimental cross. According to this, we have identified 27 differentially expressed genes co-localized with QTL for litter size traits, which fulfill the biological, positional and functional criteria.

Publication Title

Differential gene expression in ovaries of pregnant pigs with high and low prolificacy levels and identification of candidate genes for litter size.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26451
Transcriptome data for human ES, FORESKIN and FORESKIN-derived iPS (ES4SKIN) cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Assessing relevant differences between human induced pluripotent stem (iPS) cells and human embryonic stem (ES) cells is important, given that such differences may impact their potential therapeutic use.

Publication Title

The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26453
Transcriptome data for human ES, IMR90 and IMR90-derived iPS (ESIMR90) cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Assessing relevant differences between human induced pluripotent stem (iPS) cells and human embryonic stem (ES) cells is important, given that such differences may impact their potential therapeutic use.

Publication Title

The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE1051
Seed development in LEAFY COTYLEDON1 mutants
  • organism-icon Arabidopsis thaliana
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis Genome Array (ag)

Description

Analysis of gene expression in Ws-0 lec1 (LEAFY COTYLEDON1) mutant Arabidopsis thaliana. Developmental stages studied includes 24-Hr post-fertilization, globular stage, cotyledon stage, mature green stage, post-mature green stage, and seedlings.

Publication Title

LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact