Analysis of murine cardiomyocyte cell line HL-1 treated with Ivermectin or Importazole. Results provide insight into the pathways regulated by the treatments. Overall design: RNA-seq of mouse HL-1 cardiomyocytes treated with vehicle (DMSO), Ivermectin, or Importazole for 24 hours, in triplicate, using Ion Proton System.
Antihypertrophic Effects of Small Molecules that Maintain Mitochondrial ATP Levels Under Hypoxia.
Specimen part, Cell line, Treatment, Subject
View SamplesG-CSF treatment targets CXCL12-abundant reticular (CAR) cells to suppress their production of a number of B trophic factors, including CXCL12, IL-6, IL-7, IGF-1, and Flt3 ligand.
Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice.
Treatment
View SamplesHematopoietic stem cells (HSCs) primarily reside in the bone marrow where signals generated by stromal cells regulate their self-renewal, proliferation, and trafficking. Endosteal osteoblasts and perivascular stromal cells including endothelial cells3, CXCL12-abundant reticular (CAR) cells, leptin-receptor positive stromal cells, and nestin-GFP positive mesenchymal progenitors have all been implicated in HSC maintenance. However, it is unclear if specific hematopoietic progenitor cell (HPC) subsets reside in distinct niches defined by the surrounding stromal cells and the regulatory molecules they produce. CXCL12 (stromal-derived factor-1, SDF-1) regulates both HSCs and lymphoid progenitors and is expressed by all of these stromal cell populations.
CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance.
Specimen part
View SamplesGroup 2 innate lymphoid cells (ILC2) are tissue-resident innate lymphocytes that are derived from common lymphoid progenitor (CLP). While specific progenitors and transcription factors essential for ILC2 differentiation have been well studied, external factors that regulate the commitment from CLP to ILC lineage, site that promote ILC2 terminal differentiation, and stromal cells that provide optimal microenvironment for ILC2 specific development are not fully understood. we demonstrated that the three key external factors such as concentration of IL-7 and the strength and duration of Notch signaling conditionally determined the fate of CLP toward T cell, B cell, or ILC lineages, which seems to be an important process from CLP to CHILP differentiation in the fetal liver. Furthermore, we identified ILC progenitors lacking the developmental potential to become T or B cells, and KLRG1- immature ILC2 that require STAT5 for functional maturation in the mesentery. We also identified PDGFRa+gp38+ mesenchymal cells in the mesentery that support ILC2 differentiation from ILC progenitors but not from CLP. Finally, single-cell RNA-sequencing (scRNA-seq) analysis of mesenteric cells demonstrated that PDGFRa+gp38+ cells are heterogeneous populations. Collectively, our result suggested that early differentiation of ILC2 occurs in the primary lymphoid organ with regulation of environmental factors, and final differentiation occurs in the peripheral tissues once after CHILP migrate into the periphery. Overall design: Duplicate samples (mouse 1 and mouse 2) were processed for single cell-based RNA sequencing with Illumina HiSeq 2500 with 50 paired-end reads, using barcorded RNA library.
Peripheral PDGFRα<sup>+</sup>gp38<sup>+</sup> mesenchymal cells support the differentiation of fetal liver-derived ILC2.
Sex, Cell line, Subject
View SamplesBackground: 2,5-Dimethyl-4-hydroxy-3(2H)-furanone (DMHF) is one of the major odor compounds generated by the Maillard reaction. We previously reported that the inhalation of DMHF decreased systolic blood pressure via the autonomic nervous system in rats. The autonomic nervous system is also closely related to appetite regulation. The present study investigated the effects of DMHF on dietary intake and gene expression.
DMHF (2,5-dimethyl-4-hydroxy-3(2H)-furanone), a volatile food component generated by the Maillard reaction, promotes appetite and changes gene expression in the rat brain through inhalation.
Sex, Age, Specimen part, Treatment
View SamplesPurpose: RNA-Seq analysis can help identify large set of differentially expressed genes at a time. We performed RNA-Seq analysis to identify differentially expressed genes in the PBMCs of war veterans suffering from PTSD. Methods: Total RNA from PBMCs from PTSD +ve and -ve individuals were used for RNA-Seq analysis. Results: We obtained, on average, ~60 millions reads per sample. More than 70% of the reads were mapped to human genome. Functional analysis of the differentially expressed genes (362) revealed dysregulation in immune system network. Conclusions: Our present study provides further proof that immune system related genes and pathways are dysregulated in PTSD PBMCs. Overall design: RNA-Seq was performed with RNA from 5 each control and PTSD individuals. PBMCs collected within one hour of blood draw were used for RNA isolation. 1 ug of total RNA was used for library synthesis and sequenced in a HighSeq 2000 illumina instrument at Tufts University.
Decreased AGO2 and DCR1 in PBMCs from War Veterans with PTSD leads to diminished miRNA resulting in elevated inflammation.
Specimen part, Subject
View SamplesOur objective is to clarify the function of EWS-POU5F1 chimera.
Function of EWS-POU5F1 in sarcomagenesis and tumor cell maintenance.
Cell line
View SamplesTo analyze Mueller glia specific gene expression, Hes1-promoter-dEGFP mice was used. dEGFP positive and negative retinal fractions were purified by a cell sorter and subjected to RNA-seq Overall design: Examination of mRNA expression patterns in Hes1-positive (Hes1P) retinal cells and Hes1-negative (Hes1N) retinal cells at 2 developmental timepoints.
Analysis of Müller glia specific genes and their histone modification using Hes1-promoter driven EGFP expressing mouse.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms.
Specimen part, Disease, Cell line
View SamplesWe recently identified recurrent mutations of cohesin complex in myeloid neoplasms through whole-exome sequencing analysis. RAD21 is one of the main components of the cohesin complex.
Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms.
Cell line
View Samples